Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T12:00:18.525Z Has data issue: false hasContentIssue false

Carbon nitride films produced by high-energy shock plasma deposition

Published online by Cambridge University Press:  03 March 2011

L.A. Bursill
Affiliation:
School of Physics, The University of Melbourne, Parkville, 3052 Victoria, Australia
Peng JuLin
Affiliation:
School of Physics, The University of Melbourne, Parkville, 3052 Victoria, Australia
V.N. Gurarie
Affiliation:
School of Physics, The University of Melbourne, Parkville, 3052 Victoria, Australia
A.V. Orlov
Affiliation:
School of Physics, The University of Melbourne, Parkville, 3052 Victoria, Australia
S. Prawer
Affiliation:
School of Physics, The University of Melbourne, Parkville, 3052 Victoria, Australia
Get access

Abstract

High-energy shock plasma deposition techniques are used to produce carbon-nitride films containing both crystalline and amorphous components. The structures are examined by high-resolution transmission electron microscopy, parallel-electron-energy loss spectroscopy, and electron diffraction. The crystalline phase appears to be face-centered cubic with a unit cell parameter approx. a = 0.63 nm, and it may be stabilized by calcium and oxygen at about 1–2 at. % levels. 85 at. % of the carbon atoms appear to have trigonal bonding for the crystalline phase, the remaining 15 at.% having tetrahedral bonding. The amorphous carbon-nitride film component varies from essentially nanocrystalline graphite, containing virtually no nitrogen, to amorphous carbon-nitride containing up to 10 at. % N, where the fraction of sp3 bonds ranges up to approx. 85 at. %. There is PEELS evidence that the nitrogen atoms have sp2 trigonal bonds in both the amorphous and crystalline phases.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Liu, A. and Cohen, M.L., Science 145, 841842 (1989); Phys. Rev. B 42, 10721073 (1990).CrossRefGoogle Scholar
2Iwaki, M., Takahashi, K., and Sekiguchi, A., J. Mater. Res. 5, 25622566 (1990).CrossRefGoogle Scholar
3Tomg, C.J., Siversten, J.M., Judy, J. H., and Chang, C., J. Mater. Res. 5, 24902496 (1990).Google Scholar
4Han, H-X. and Feldman, B. J., Solid State Commun. 65, 921923 (1988).CrossRefGoogle Scholar
5Chubaci, J. D. F., Sakai, T., Yamamoto, T., Agata, K., Ebe, A., and Fujimoto, F., Nucl. Instrum. Methods, Phys. Res. B 80/81, 463466 (1993).CrossRefGoogle Scholar
6Li, D., Chung, Y., Wong, M., and Sproul, W. D., J. Appl. Phys. 74, 219223 (1993).CrossRefGoogle Scholar
7Maya, L., Cole, D.R., and Hagaman, E.W., J. Am. Ceram. Soc. 74, 16861688 (1991).CrossRefGoogle Scholar
8Ricci, M., Trinquecoste, M., Auguste, F., Canet, R., Delhaes, P., Guimon, C., Pfister-Guillouzo, G., Nysten, B., and Issi, J. P., J. Mater. Res. 8, 480488 (1993).CrossRefGoogle Scholar
9Fujimoto, F. and Ogata, K., Jpn. J. Appl. Phys. 32, 420423 (1993).Google Scholar
10Niu, C., Lu, Y. Z., and Lieber, C. M., Science 261, 334337 (1993).CrossRefGoogle Scholar
11Matsumoto, O., Kotai, T., Shikano, H., Takemura, K., and Tanaka, S., J. Electrochem. Soc. 141, L16L18 (1994).CrossRefGoogle Scholar
12Gurarie, V.N., Orlov, A.V., Nugent, K.W., Weiser, P., and Prawer, S., in Novel Forms of Carbon II, edited by Renschler, C. L., Cox, D. M., Pouch, J. J., and Achiba, Y. (Mater. Res. Soc. Symp. Proc. 349, Pittsburgh, PA, 1994), pp. 3742.Google Scholar
13The Properties of Natural and Synthetic Diamond, edited by Field, J. (Academic Press, New York, 1992), Chaps. 12–14.Google Scholar
14Berger, S. D., McKenzie, D. R., and Martin, P. J., Philos. Mag. Lett. 57, 285290 (1988).CrossRefGoogle Scholar
15Davis, C.A., McKenzie, D.R., Yin, Y., Kravtchinskaia, E., Amaratunga, G. A. J., and Veerasamy, V.S., Philos. Mag. B 69, 11331140 (1994).CrossRefGoogle Scholar
16Heimann, R. B. and Kleiman, J., Crystals: Growth, Properties and Applications II (Springer, Berlin, 1988), p. 1.Google Scholar
17Heimann, R.B., Diamond and Related Materials 3, 11511157 (1994).CrossRefGoogle Scholar