Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T01:34:37.154Z Has data issue: false hasContentIssue false

Assembly of metallic nanoparticles with controllable size in nanopores of biomorphic oxide fibers templated by cotton tissue

Published online by Cambridge University Press:  03 March 2011

Xufan Li
Affiliation:
State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200030, China
Tongxiang Fan*
Affiliation:
State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200030, China
Di Zhang
Affiliation:
State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200030, China
Qixin Guo
Affiliation:
Department of Electrical and Electronic Engineering, Saga University, Saga 840-8502, Japan
Hiroshi Ogawa
Affiliation:
Department of Electrical and Electronic Engineering, Saga University, Saga 840-8502, Japan
*
a) Address all correspondence to this author. e-mail: txfan@sjtu.edu.cn
Get access

Abstract

Biomorphic SiO2 fibers were synthesized with cotton tissue as the template and with cetyltrimethylammonium bromide (CTAB) as surfactant through a surface sol-gel process. The as-prepared samples retain well the original morphology of cotton and show a uniform and large amount of nanopores. Sliver nanoparticles were successfully incorporated into the nanopores through impregnation and chemical reduction to form SiO2/Ag composite fibers. Ag nanoparticles with mean diameter approximately 3 nm have a size distribution in accordance with the nanoporosity of SiO2 matrix. Such composite fibers show prominent surface plasma resonance (SPR) effect, and during heat treatment under increasing temperatures, the SPR intensity is enhanced because of the size effect, and the SPR position undergoes a redshift first and then a blueshift.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zhang, L.D. and Mou, J.M.: Nano-Materials and Nano-Structure (Science Press, Beijing, 2002).Google Scholar
2Chen, S.W., Ingram, T.S., Hostetler, M.J., Pietron, J.J., Murray, R.W., Schaaff, T.G., Khoury, J.T., Alvarez, M.M., and Whetten, R.L.: Gold nanoelectrodes of varied size: Transition to molecule-like charging. Science 280, 2098 (1998).CrossRefGoogle ScholarPubMed
3Barazzouk, S., Kamat, P.V., and Hotchandani, S.: Photoinduced electron transfer between chlorophyll a and gold nanoparticles. J. Phys. Chem. B 109, 716 (2005).CrossRefGoogle ScholarPubMed
4Tang, Z.Y. and Kotov, N.: One-dimensional assemblies of nanoparticles: Preparation, properties, and promise. Nano Lett. 17, 951 (2005).Google Scholar
5Hidenobu, N., Hiroshi, S., Yojiro, Y., Shiho, T., Tsutomu, N., Shigeru, S., and Toshio, O.: Highly ordered assemblies of Au nanoparticles organized on DNA. Nano Lett. 3, 1391 (2003).Google Scholar
6Beecroft, L.L. and Ober, C.K.: Nanocomposite materials for optical applications. Chem. Mater. 9, 1302 (1997).CrossRefGoogle Scholar
7Masatake, H. and Masakazu, D.: Advances in the catalysis of Au nanoparticles. Appl. Catal. G E N 222, 427 (2001).Google Scholar
8Liz-Marzan, L.M., Giersig, M., and Mulvaney, P.: Synthesis of nanosized gold-silica core-shell particles. Langmuir 12, 4329 (1996).CrossRefGoogle Scholar
9Salgueirino-Maceira, V., Caruso, F., and Liz-Marzan, L.M.: Coated colloids with tailored optical properties. J. Phys. Chem. B 107, 10990 (2003).CrossRefGoogle Scholar
10Oldfield, G., Ung, T., and Mulvaney, P.: Au-SnO2 core-shell nanocapacitors. Adv. Mater. 12, 1519 (2000).3.0.CO;2-W>CrossRefGoogle Scholar
11Cassagneau, T. and Caruso, F.: Contiguous silver nanoparticle coatings on dielectric spheres. Adv. Mater. 14, 732 (2002).3.0.CO;2-P>CrossRefGoogle Scholar
12Jung, W.Y., Hathcock, D., and El-Sayed, M.A.: Characterization of Pt nanoparticles encapsulated in Al2O3 and their catalytic efficiency in propene hydrogenation. J. Phys. Chem. A 106, 2049 (2002).Google Scholar
13Fatti, N.D., Vallee, F., Flytzanis, C., Hamanaka, Y., and Nakamura, A.: Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles. Chem. Phys. 251, 215 (2000).Google Scholar
14Fatti, N.D. and Vallee, F.: Ultrafast induced electron-surface scattering in a confined metallic system. Appl. Phys. B 68, 433 (1999).CrossRefGoogle Scholar
15Gu, J.L., Shi, J.L., You, G.J., Xiong, L.M., Qian, S.X., Hua, Z.L., and Chen, H.R.: Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response. Adv. Mater. 17, 557 (2005).CrossRefGoogle Scholar
16Zhang, Q.F., Liu, W.M., Xue, Z.Q., Wu, J.L., Wang, S.F., Wang, D.L., and Gong, Q.H.: Ultrafast optical Kerr effect of Ag-BaO composite thin films. Appl. Phys. Lett. 82, 958 (2003).CrossRefGoogle Scholar
17Zhou, P., You, G.J., Li, Y.G., Han, T., Li, J., Wang, S.Y., Chen, L.Y., Liu, Y., and Qian, S.X.: Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composites films. Appl. Phys. Lett. 83, 3876 (2003).CrossRefGoogle Scholar
18Zhang, C.F., Liu, Y., You, G.J., Li, B., Shi, J.L., and Qian, S.X.: Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films. Physica B (Amsterdam) 357, 334 (2005).CrossRefGoogle Scholar
19Bohren, C.F. and Huffman, D.R.: Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).Google Scholar
20Ohtani, B., Iwai, K., Nishimoto, S., and Sato, S.: Role of platinum deposits on titanium (IV) oxide particles: Structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. J. Phys. Chem. B 101, 3349 (1997).CrossRefGoogle Scholar
21Kozuka, H., Zhao, G., and Yoko, T.: Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films 277, 147 (1996).Google Scholar
22Valden, M., Lai, X., and Goodman, D.W.: Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647 (1998).CrossRefGoogle ScholarPubMed
23Christian, B. and Philippe, T.: Effective magnetic permeability of Ni and Co micro- and nanoparticles embedded in a ZnO matrix. J. Appl. Phys. 97, 104325 (2005).Google Scholar
24Yang, L., Li, G.H., and Zhang, L.D.: Effects of surface resonance state on the plasmon resonance absorption of Ag nanoparticles embedded in partially oxidized amorphous Si matrix. Appl. Phys. Lett. 76, 1537 (2000).CrossRefGoogle Scholar
25Zhu, S., Wang, M.L., Zu, X.T., and Xiang, X.: Optical and magnetic properties of Ni nanoparticles in rutile formed by Ni ion implantation. Appl. Phys. Lett. 88, 043107 (2006).CrossRefGoogle Scholar
26He, J.H., Toyoki, K., and Aiko, N.: In situ synthesis of noble metal nanoparticles in ultrathin TiO2-gel films by a combination of ion-exchange and reduction processes. Langmuir 18, 10005 (2002).Google Scholar
27Satoshi, T., Kensuke, A., Hiroyuki, S., Shingo, I., Hidemi, N., and Chiharu, M.: Tuning magnetic interactions in ferromagnetic-metal nanoparticle systems. Phys. Rev. B 71, 180414.1-4 (2005).Google Scholar
28Dong, A.G., Wang, Y.J., Tang, Y., Ren, N., Zhang, Y.H., Yue, Y.H., and Gao, Z.: Zeolitic tissue through wood cell templating. Adv. Mater. 14, 926 (2002).3.0.CO;2-1>CrossRefGoogle Scholar
29Fan, T.X., Sun, B.H., Gu, J.J., Zhang, D., and Leo, W.M.L.: Biomorphic Al2O3 fibers synthesized using cotton as bio-templates. Scripta Mater. 53, 893 (2005).Google Scholar
30Sun, B.H., Fan, T.X., Xu, J.Q., and Zhang, D.: Biomorphic synthesis of SnO2 microtubules on cotton fibers. Mater. Lett. 59, 2325 (2005).CrossRefGoogle Scholar
31Zhang, W., Zhang, D., Fan, T.X., Ding, J., Guo, Q.X., and Hiroshi, O.: Fabrication of ZnO microtubes with adjustable nanopores on the walls by the templating of butterfly wing scales. Nanotechnology 17, 840 (2006).CrossRefGoogle Scholar
32Fan, T.X., Li, X.F., Liu, Z.T., Guo, Q.X., and Zhang, D.: Microstructure and infrared adsorption of biomorphic chromium oxides templated by wood tissues. J. Am. Ceram. Soc. 89, 3511 (2006).CrossRefGoogle Scholar
33Li, X.F., Fan, T.X., Liu, Z.T., Ding, J., Guo, Q.X., and Zhang, D.: Synthesis and hierarchical pore structure of biomorphic manganese oxide derived from woods. J. Eur. Ceram. Soc. 26, 3657 (2006).CrossRefGoogle Scholar
34Liu, Z.T., Fan, T.X., and Zhang, D.: Synthesis of biomorphous nickel oxide from a pinewood template and investigation on a hierarchical porous structure. J. Am. Ceram. Soc. 82, 662 (2006).CrossRefGoogle Scholar
35Caruso, R.A.: Micrometer-to-nanometer replication of hierarchical structures by using a surface sol-gel process. Angew. Chem. Int. Ed. Engl. 43, 2746 (2004).CrossRefGoogle ScholarPubMed
36Liu, Z.T., Fan, T.X., Zhang, W., and Zhang, D.: The synthesis of hierarchical porous iron oxide with wood templates. Microporous Mesoporous Mater. 85, 82 (2005).CrossRefGoogle Scholar
37He, J.H. and Toyoki, K.: Preparation and thermal stability of gold nanoparticles in silk-templated porous filaments of titania and zirconia. Chem. Mater. 16, 2656 (2004).CrossRefGoogle Scholar
38Shin, Y.S., Lin, J., Chan, J.H., Nie, Z.M., and Exarhos, G.J.: Hierarchical ordered ceramics through surfactant-templated sol-gel mineralization of biological cellular structures. Adv. Mater. 13, 728 (2001).Google Scholar
39Fan, T.X., Hirose, T., Okabe, T., Zhang, D., Teranisi, R., and Yoshimura, M.: Effect of components upon the surface area of wood ceramics. J. Porous Mater. 9, 35 (2002).CrossRefGoogle Scholar
40Seaton, N.A.: Determination of the connectivity of porous solids from nitrogen adsorption measurements. Chem. Eng. Sci. 46, 1895 (1991).Google Scholar
41He, J.H., Toyoki, K., and Aiko, N.: Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem. Mater. 15, 4401 (2003).CrossRefGoogle Scholar
42Cai, W.P., Tan, M., Wang, G.Z., and Zhang, L.D.: Reversible transition between transparency and opacity for the porous silica host dispersed with silver nanometer particles within its pores. Appl. Phys. Lett. 69, 2980 (1996).CrossRefGoogle Scholar
43Pan, A.L., Yang, Z.P., Zheng, H.G., Liu, F.X., Zhu, Y.C., Su, X.B., and Ding, Z.J.: Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment. Appl. Surf. Sci. 205, 323 (2003).CrossRefGoogle Scholar