Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-13T11:00:03.709Z Has data issue: false hasContentIssue false

Tuning the functional interface of carbon nanotubes by electrochemistry: Toward nanoscale chemical sensors and biosensors

Published online by Cambridge University Press:  04 January 2012

Kannan Balasubramanian*
Affiliation:
Max-Planck-Institute for Solid State Research, D70569 Stuttgart, Germany
Tetiana Kurkina
Affiliation:
Max-Planck-Institute for Solid State Research, D70569 Stuttgart, Germany
Ashraf Ahmad
Affiliation:
Max-Planck-Institute for Solid State Research, D70569 Stuttgart, Germany
Marko Burghard
Affiliation:
Max-Planck-Institute for Solid State Research, D70569 Stuttgart, Germany
Klaus Kern
Affiliation:
Max-Planck-Institute for Solid State Research, D70569 Stuttgart, Germany
*
a)Address all correspondence to this author. e-mail: b.kannan@fkf.mpg.de
Get access

Abstract

The ability to tune the functional interface of single-walled carbon nanotubes in a versatile manner is key to the success of deploying them as an active material in chemical and biological sensors. Here we present an overview of our device strategies demonstrating the use of controlled electrochemical functionalization to tune this interface by bringing in different functionalities ranging from metallic nanoparticles to biomolecules onto the nanotube surface. The extent of such a functionalization is tunable, providing us with a good control over sensitivity, selectivity, and detection limit of the realized sensors. Moreover, the sensor mechanisms have been analyzed. Taken together the methods and results outlined here constitute a general framework for the rational design of nanoscale field-effect-based chemical sensors and biosensors.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jorio, A., Dresselhaus, G., and Dresselhaus, M.S.: Carbon Nanotubes: Advanced Topics in Synthesis, Structure, Properties and Applications (Springer, Berlin Heidelberg, Germany 2008), pp. 1, 13–61.CrossRefGoogle Scholar
2.Meyyappan, M.: Carbon Nanotubes: Science and Applications (CRC Press, Boca Raton, FL, 2005), pp. 163278.Google Scholar
3.O’connell, M.J.: Carbon Nanotubes: Properties, Applications and Commercialization, 2nd ed. (CRC Press, Boca Raton, FL, 2012), pp. 132.Google Scholar
4.Merkoci, A.: Biosensing Using Nanomaterials, The Wiley Series in Nanoscience and Nanotechnology (John Wiley & Sons, NJ, 2009), pp. 330.CrossRefGoogle Scholar
5.Wang, J. and Lin, Y.: Functionalized carbon nanotubes and nanofibers for biosensing applications. Trends Analyt. Chem. 27, 619 (2008).CrossRefGoogle ScholarPubMed
6.Kurkina, T. and Balasubramanian, K.: Towards in vitro molecular diagnostics using nanostructures. Cell. Mol. Life Sci. (2011) DOI: 10.1007/s00018-011-0855-7.Google ScholarPubMed
7.Wu, H-C., Chang, X., Liu, L., Zhao, F., and Zhao, Y.: Chemistry of carbon nanotubes in biomedical applications. J. Mater. Chem. 20, 1036 (2010).CrossRefGoogle Scholar
8.Niyogi, S., Hamon, M.A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M.E., and Haddon, R.C.: Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105 (2002).CrossRefGoogle ScholarPubMed
9.Balasubramanian, K. and Burghard, M.: Chemically functionalized carbon nanotubes. Small 1, 180 (2005).CrossRefGoogle ScholarPubMed
10.Davis, J.J., Coleman, K.S., Azamian, B.R., Bagshaw, C.B., and Green, M.L.H.: Chemical and biochemical sensing with modified single walled carbon nanotubes. Chemistry 9, 3732 (2009).CrossRefGoogle Scholar
11.Georgakilas, V., Kordatos, K., Prato, M., Guldi, D.M., Holzinger, M., and Hirsch, A.: Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 760 (2002).CrossRefGoogle ScholarPubMed
12.Banks, C.E., Davies, T.J., Wildgoose, G.G., and Compton, R.G.: Electrocatalysis at graphite and carbon nanotube modified electrodes: Edge-plane sites and tube ends are the reactive sites. Chem. Commun. 7, 829 (2005).CrossRefGoogle Scholar
13.Burghard, M.: Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surf. Sci. Rep. 58, 1 (2005).Google Scholar
14.Cui, J.B., Burghard, M., and Kern, K.: Reversible sidewall osmylation of individual carbon nanotubes. Nano Lett. 3, 613 (2003).CrossRefGoogle Scholar
15.Moghaddam, M.J., Taylor, S., Gao, M., Huang, S.M., Dai, L.M., and McCall, M.J.: Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry. Nano Lett. 4, 89 (2004).CrossRefGoogle Scholar
16.Bahr, J.L. and Tour, J.M.: Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12, 1952 (2002).CrossRefGoogle Scholar
17.Kooi, S.E., Schlecht, U., Burghard, M., and Kern, K.: Electrochemical modification of single carbon nanotubes. Angew. Chem. Int. Ed. 41, 1353 (2002).3.0.CO;2-I>CrossRefGoogle ScholarPubMed
18.Balasubramanian, K. and Burghard, M.: Electrochemically functionalized carbon nanotubes for device applications. J. Mater. Chem. 18, 3071 (2008).CrossRefGoogle Scholar
19.Peng, X. and Wong, S.S.: Functional covalent chemistry of carbon nanotube surfaces. Adv. Mater. 21, 625 (2009).CrossRefGoogle Scholar
20.Maroto, A., Balasubramanian, K., Burghard, M., and Kern, K.: Functionalized metallic carbon nanotube devices for pH sensing. ChemPhysChem 8, 220 (2007).CrossRefGoogle ScholarPubMed
21.Kong, J., Soh, H.T., Cassell, A.M., Quate, C.F., and Dai, H.: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878 (1998).CrossRefGoogle Scholar
22.Soh, H.T., Quate, C.F., Morpurgo, A.F., Marcus, C.M., Kong, J., and Dai, H.: Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes. Appl. Phys. Lett. 75, 627 (1999).CrossRefGoogle Scholar
23.Rispal, L. and Schwalke, U.: Large-scale in situ fabrication of voltage-programmable dual-layer high-K dielectric carbon nanotube memory devices with high On/Off ratio. IEEE Electron Device Lett. 29, 1349 (2008).CrossRefGoogle Scholar
24.Ebbesen, T.W. and Ajayan, P.M.: Large scale synthesis of carbon nanotubes. Nature 358, 220 (1992).CrossRefGoogle Scholar
25.Terrones, M., Grobert, N., Zhang, J.P., Terrones, H., Olivares, J., Hsu, W.K., Hare, J.P., Cheetham, A.K., Kroto, H.W., and Walton, D.R.M.: Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films. Chem. Phys. Lett. 285, 299 (1998).CrossRefGoogle Scholar
26.Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E.: Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49 (1995).CrossRefGoogle Scholar
27.Bronikowski, M.J., Willis, P.A., Colbert, D.T., Smith, K.A., and Smalley, R.E.: Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol. A 19, 1800 (2001).CrossRefGoogle Scholar
28.Hersam, M.C.: Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 3, 387 (2008).CrossRefGoogle ScholarPubMed
29.Tans, S.J., Verscheueren, A.R.M., and Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998).CrossRefGoogle Scholar
30.Martel, R., Schmidt, T., Shea, H.R., Hertel, T., and Avouris, Ph.: Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447 (1998).CrossRefGoogle Scholar
31.Vlandas, A., Kurkina, T., Ahmad, A., Kern, K., and Balasubramanian, K.: Enzyme-free sugar sensing in microfluidic channels with an affinity-based carbon nanotube sensor. Anal. Chem. 82, 6090 (2010).CrossRefGoogle ScholarPubMed
32.An, L. and Friedrich, C.R.: Real-time gap impedance monitoring of dielectrophoretic assembly of multiwalled carbon nanotubes. Appl. Phys. Lett. 92, 173103 (2008).CrossRefGoogle Scholar
33.Monica, A.H., Papadakis, S.J., Osiander, R., and Paranjape, M.: Wafer-level assembly of carbon nanotube networks using dielectrophoresis. Nanotechnology 19, 085303 (2008).CrossRefGoogle ScholarPubMed
34.Saito, R., Dresselhaus, G., and Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes (Imperial College Press, London, United Kingdom, 1998), pp. 5970.CrossRefGoogle Scholar
35.Zheng, M., Jagota, A., Semke, E.D., Diner, B.A., Mclean, R.S., Lustig, S.R., Richardson, R.E., and Tassi, N.G.: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338 (2003).CrossRefGoogle ScholarPubMed
36.Tanaka, T., Urabe, Y., Nishide, D., and Kataura, H.: Continuous separation of metallic and semiconducting carbon nanotubes using agarose gel. Appl. Phys. Express 2, 125002 (2009).CrossRefGoogle Scholar
37.Green, A.A. and Hersam, M.C.: Ultracentrifugation of single-walled nanotubes. Mater. Today 10, 59 (2007).CrossRefGoogle Scholar
38.NanoIntegris Inc: High Mobility Semiconductor Inks. http://www.nanointegris.com.Google Scholar
39.Ganzhorn, M., Vijayaraghavan, A., Dehm, S., Hennrich, F., Green, A.A., Fichtner, M., Voigt, A., Rapp, M., von Loehneysen, H., Hersam, M.C., Kappes, M.M., and Krupke, R.: Hydrogen sensing with diameter- and chirality-sorted carbon nanotubes. ACS Nano 5, 1670 (2011).CrossRefGoogle ScholarPubMed
40.Kurkina, T., Vlandas, A., Ahmad, A., Kern, K., and Balasubramanian, K.: Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew. Chem. Int. Ed. 50, 3710 (2011).CrossRefGoogle ScholarPubMed
41.Kim, W., Javey, A., Vermesh, O., Wang, Q., Li, Y., and Dai, H.: Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3, 193 (2003).CrossRefGoogle Scholar
42.Balasubramanian, K., Lee, E.J.H., Weitz, R.T., Burghard, M. and Kern, K.: Carbon nanotube transistors: Chemical functionalization and device characterization. Phys. Status Solidi A 205, 633 (2008).CrossRefGoogle Scholar
43.Heller, I., Kong, J., Williams, K.A., Dekker, C., and Lemay, S.G.: Electrochemistry at single-walled carbon nanotubes: The role of band structure and quantum capacitance. J. Am. Chem. Soc. 128, 7353 (2006).CrossRefGoogle ScholarPubMed
44.Balasubramanian, K., Burghard, M., and Kern, K.: Effect of the electronic structure of carbon nanotubes on the selectivity of electrochemical functionalization. Phys. Chem. Chem. Phys. 10, 2256 (2008).CrossRefGoogle ScholarPubMed
45.Bard, A.J. and Faulkner, L.R.: Electrochemical Methods and Applications (John Wiley & Sons, NJ, 2001), pp. 632658.Google Scholar
46.Fan, Y., Goldsmith, B.R., and Collins, P.G.: Identifying and counting point defects in carbon nanotubes. Nat. Mater. 4, 906 (2005).CrossRefGoogle ScholarPubMed
47.Scolari, M., Mews, A., Fu, N., Myalitsin, A., Assmus, T., Balasubramanian, K., Burghard, M., and Kern, K.: Surface-enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles. J. Phys. Chem. C 112, 391 (2008).CrossRefGoogle Scholar
48.Day, T.M., Unwin, P.R., Wilson, N.R., and Macpherson, J.: Electrochemical templating of metal nanoparticles and nanowires on single-wall carbon nanotube networks. J. Am. Chem. Soc. 127, 10639 (2005).CrossRefGoogle Scholar
49.Wildgoose, G.G., Banks, C.E., and Compton, R.G.: Metal nanoparticles and related materials supported on carbon nanotubes: Methods and applications. Small 2, 182 (2006).CrossRefGoogle ScholarPubMed
50.Assmus, T., Balasubramanian, K., Burghard, M., Kern, K., Scolari, M., Fu, N., Myalitsin, A., and Mews, A.: Raman properties of gold nanoparticle-decorated individual carbon nanotubes. Appl. Phys. Lett. 90, 173109 (2007).CrossRefGoogle Scholar
51.Schlecht, U., Balasubramanian, K., Burghard, M., and Kern, K.: Electrochemically decorated carbon nanotubes for hydrogen sensing. Appl. Surf. Sci. 235, 8394 (2007).CrossRefGoogle Scholar
52.Balasubramanian, K., Friedrich, M., Jiang, C., Fan, Y., Mews, A., Burghard, M., and Kern, K.: Electrical transport and confocal Raman studies of electrochemically modified individual carbon nanotubes. Adv. Mater. 15, 1515 (2003).CrossRefGoogle Scholar
53.Gao, M., Huang, S., Dai, L., Wallace, G., Gao, R., and Wang, Z.: Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers. Angew. Chem. Int. Ed. 39, 3664 (2000).3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
54.Burghard, M., Maroto, A., Balasubramanian, K., Assmus, T., Forment-Aliaga, A., Lee, E.J.H., Weitz, R.T., Scolari, M., Nan, F., Mews, A. and Kern, K.: Electrochemically modified single-wall carbon nanotubes. Phys. Status Solidi B 244, 4021 (2007).CrossRefGoogle Scholar
55.Baibarac, M., Baltog, I., Godon, C., Lefrant, S., and Chauvet, O.: Covalent functionalization of single-walled carbon nanotubes by aniline electrochemical polymerization. Carbon 42, 3143 (2004).CrossRefGoogle Scholar
56.Bahr, J.L., Yang, J., Kosynkin, D.V., Bronikowski, M.J., Smalley, R.E., and Tour, J.M.: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 123, 6536 (2001).CrossRefGoogle ScholarPubMed
57.Kuznetsova, A., Popova, I., Yates, J.T., Bronikowski, M.J., Huffmann, C.B., Liu, J., Smalley, R.E., Hwu, H.H., and Chen, J.G.: Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J. Am. Chem. Soc. 123, 10699 (2001).CrossRefGoogle ScholarPubMed
58.Hirsch, A.: Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41, 1853 (2002).3.0.CO;2-N>CrossRefGoogle ScholarPubMed
59.Balasubramanian, K.: Challenges in the use of 1D nanostructures for on-chip biosensing and diagnostics. Biosens. Bioelectron. 26, 1195 (2010).CrossRefGoogle ScholarPubMed
60.Balasubramaniann, K., Sordan, R., Burghard, M., and Kern, K.: A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett. 4, 827 (2004).CrossRefGoogle Scholar
61.Kurkina, T. and Balasubramanian, K.: Towards in vitro molecular diagnostics using nanostructure. Cell. Mol. Life Sci. (2011, in press).Google Scholar
62.Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., and Dai, H.: Nanotube molecular wires as chemical sensors. Science 287, 622 (2000).CrossRefGoogle ScholarPubMed
63.Bradley, K., Gabriel, J.C.P., Briman, M., Star, A., and Gruener, G.: Charge transfer from ammonia physisorbed on nanotubes. Phys. Rev. Lett. 91, 213801 (2003).CrossRefGoogle ScholarPubMed
64.Lewis, F.: The Palladium-Hydrogen System (Academic Press Inc., MA, 1967), pp. 121.Google Scholar
65.James, T.D., Phillips, M.D., and Shinkai, S.: Boronic Acids in Saccharide Recognition (Royal Society of Chemistry Publishing, London, United Kingdom, 2006), pp. 133.CrossRefGoogle Scholar
66.Heller, I., Janssens, A.M., Mannik, J., Minot, E.D., Lemay, S.G., and Dekker, C.: Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8, 591 (2008).CrossRefGoogle ScholarPubMed