Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T23:46:37.381Z Has data issue: false hasContentIssue false

Transport characteristics of type II Weyl semimetal MoTe2 thin films grown by chemical vapor deposition

Published online by Cambridge University Press:  04 November 2019

Niraj Bhattarai*
Affiliation:
Department of Physics, The Catholic University of America, Washington, District of Columbia 20064, USA; and The Vitreous State Laboratory, The Catholic University of America, Washington, District of Columbia 20064, USA
Andrew W. Forbes
Affiliation:
Department of Physics, The Catholic University of America, Washington, District of Columbia 20064, USA; and The Vitreous State Laboratory, The Catholic University of America, Washington, District of Columbia 20064, USA
Rajendra P. Dulal
Affiliation:
Advanced Physics Laboratory, Institute for Quantum Studies, Chapman University, Burtonsville, Maryland 20806, USA
Ian L. Pegg
Affiliation:
Department of Physics, The Catholic University of America, Washington, District of Columbia 20064, USA; and The Vitreous State Laboratory, The Catholic University of America, Washington, District of Columbia 20064, USA
John Philip
Affiliation:
Department of Physics, The Catholic University of America, Washington, District of Columbia 20064, USA; and The Vitreous State Laboratory, The Catholic University of America, Washington, District of Columbia 20064, USA
*
a)Address all correspondence to this author. e-mail: bhattarai@cua.edu
Get access

Abstract

Theoretical calculations and experimental observations show MoTe2 is a type II Weyl semimetal, along with many members of transition metal dichalcogenides family. We have grown highly crystalline large-area MoTe2 thin films on Si/SiO2 substrates by chemical vapor deposition. Very uniform, continuous, and smooth films were obtained as confirmed by scanning electron microscopy and atomic force microscopy analyses. Measurements of the temperature dependence of longitudinal resistivity and current–voltage characteristics at different temperature are discussed. Unsaturated, positive quadratic magnetoresistance of the as-grown thin films has been observed from 10 to 200 K. Hall resistivity measurements confirm the majority charge carriers are hole.

Type
Article
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dawson, W.G. and Bullett, D.W.: Electronic structure and crystallography of MoTe2 and WTe2. J. Phys. C: Solid State Phys. 20, 6159 (1987).CrossRefGoogle Scholar
Yanpeng, Q., Naumov, P.G., Ali, M.N., Rajamathi, C.R., Schnelle, W., Barkalov, O., Hanfland, M., Wu, S-C., Shekher, C., Sun, Y., Süß, V., Schmidt, M., Schwarz, U., Pippel, E., Werner, P., Hillebrand, R., Forster, T., Kampert, E., Parkin, S., Cava, R.J., Felser, C., Yan, B., and Medvedev, S.A.: Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016).Google Scholar
Naylor, C.H., Parkin, W.M., Ping, J., Gao, Z., Zhou, Y.R., Kim, Y., Streller, F., Carpick, R.W., Rappe, A.M., Drndić, M., Kikkawa, J.M., and Johnson, A.T.C.: Monolayer single-crystal 1T′-MoTe2 grown by chemical vapor deposition exhibits weak antilocalization effect. Nano Lett. 16, 4297 (2016).CrossRefGoogle ScholarPubMed
Xu, X., Yao, W., Xiao, D., and Heniz, T.F.: Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343 (2014).CrossRefGoogle Scholar
Zhou, L., Xu, K., Zubair, A., Zhang, X., Ouyang, F., Palacios, T., Dresselhaus, M.S., Li, Y., and Kong, J.: Role of molecular sieves in the CVD synthesis of large-area 2D MoTe2. Adv. Funct. Mater. 27, 1603491 (2017).CrossRefGoogle Scholar
Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., Strano, M.S., and Coleman, J.N.: Liquid exfoliation of layered materials. Science 340, 1226419 (2013).CrossRefGoogle Scholar
Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O.V., and Kis, A.: 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).CrossRefGoogle Scholar
Noh, S.H., Hwang, J., Kang, J., Seo, M.H., Choi, D., and Han, B.: Tuning the catalytic activity of heterogeneous two-dimensional transition metal dichalcogenides for hydrogen evolution. J. Mater. Chem. A 6, 20005 (2018).CrossRefGoogle Scholar
Tan, C. and Zhang, H.: Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713 (2015).CrossRefGoogle ScholarPubMed
Huang, X., Zeng, Z., and Zhang, H.: Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 42, 1934 (2013).CrossRefGoogle ScholarPubMed
Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, Q., Chen, X., and Zhang, H.: Single-layer MoS2 phototransistors. ACS Nano 6, 74 (2011).CrossRefGoogle ScholarPubMed
Huang, X., Zeng, Z., Bao, S., Wang, M., Qi, X., Fan, Z., and Zhang, H.: Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444 (2013).CrossRefGoogle ScholarPubMed
Zhou, Q., Rhodes, D., Zhang, Q.R., Tang, S., Schönemann, R., and Balicas, L.: Hall effect within the colossal magnetoresistive semimetallic state of MoTe2. Phys. Rev. B 94, 121101 (2016).CrossRefGoogle Scholar
Qian, X., Liu, J., Fu, L., and Li, J.: Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344 (2014).CrossRefGoogle ScholarPubMed
Dulal, R.P., Dahal, B.R., Forbes, A., Bhattarai, N., Pegg, I.L., and Philip, J.: Nanostructures of type-II topological Dirac semimetal NiTe2. J. Vac. Sci. Technol., B 37, 042903 (2019).CrossRefGoogle Scholar
Song, S., Keum, D.H., Cho, S., Perello, D., Kim, Y., and Lee, Y.H.: Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188 (2015).CrossRefGoogle ScholarPubMed
Revolinsky, E. and Beerntsen, D.J.: Electrical properties of α- and β-MoTe2 as affected by stoichiometry and preparation temperature. J. Phys. Chem. Solids 27, 523 (1966).CrossRefGoogle Scholar
Empante, T.A., Zhou, Y., Klee, V., Nguyen, A.E., Lu, I-H., Valentin, M.D., Alvillar, S.A.N., Preciado, E., Berges, A.J., Merida, C.S., Gomez, M., Bobek, S., Isarraraz, M., Reed, E.J., and Bartels, L.: Chemical vapor deposition growth of few-layer MoTe2 in the 2H, 1T′, and 1T phases: Tunable properties of MoTe2 films. ACS Nano 11, 905 (2017).CrossRefGoogle ScholarPubMed
Deng, K., Wan, G., Deng, P., Zhang, K., Ding, S., Wang, E., Yan, M., Huang, H., Zhang, H., Xu, Z., Denlinger, J., Fedorov, A., Yang, H., Duan, W., Yao, H., Wu, Y., Fan, S., Zhang, H., Chen, X., and Zhou, S.: Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105 (2016).CrossRefGoogle Scholar
Zandt, T., Dwelk, H., Janowitz, C., and Manzke, R.: Quadratic temperature dependence up to 50 K of the resistivity of metallic MoTe2. J. Alloys Compd. 442, 216 (2007).CrossRefGoogle Scholar
Luo, X., Chen, F.C., Zhang, J.L., Pei, Q.L., Lin, G.T., Lu, W.J., Han, Y.Y., Xi, C.Y., Song, W.H., and Sun, Y.P.: Td-MoTe2: A possible topological superconductor. Appl. Phys. Lett. 109, 102601 (2016).CrossRefGoogle Scholar
Soluyanov, A.A., Gresch, D., Wang, Z., Wu, Q.S., Troyer, M., Dai, X., and Bernevig, B.A.: Type-II Weyl semimetals. Nature 527, 495 (2015).CrossRefGoogle ScholarPubMed
Dulal, R.P., Dahal, B.R., Forbes, A., Bhattarai, N., Pegg, I.L., and Philip, J.: Weak localization and small anomalous Hall conductivity in ferromagnetic Weyl semimetal Co2TiGe. Sci. Rep. 9, 3342 (2019).CrossRefGoogle ScholarPubMed
Huang, X., Zhao, L., Long, Y., Wang, P., Chen, D., Yang, Z., Liang, H., Xue, M., Weng, H., Fang, Z., Dai, X., and Chen, G.: Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).Google Scholar
Xu, G., Weng, H., Wang, Z., Dai, X., and Fang, Z.: Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).10.1103/PhysRevLett.107.186806CrossRefGoogle ScholarPubMed
Wan, Z., Turner, A.M., Vishwanath, A., and Savrasov, S.Y.: Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).CrossRefGoogle Scholar
Parameswaran, S.A., Grover, T., Abanin, D.A., Pesin, D.A., and Vishwanath, A.: Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).Google Scholar
Keum, D.H., Cho, S., Kim, J.H., Choe, D.H., Sung, H.J., Kan, M., Kang, H., Hwang, J.Y., Kim, S.W., Yang, H., Chang, K.J., and Lee, Y.H.: Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482 (2015).CrossRefGoogle Scholar
Sun, Y., Wu, S-C., Ali, M.N., Felser, C., and Yan, B.: Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 92, 161107 (2015).CrossRefGoogle Scholar
Wang, Z., Gresch, D., Soluyanov, A.A., Xei, W., Kushwaha, S., Dai, X., Troyer, M., Cava, R.J., and Bernevig, B.A.: MoTe2: A type-II weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).CrossRefGoogle Scholar
Huang, L., McCormick, T.M., Ochi, M., Zhao, Z., Suzuki, M-T., Arita, R., Wu, Y., Mou, D., Cao, H., Yan, J., Trivedi, N., and Kaminski, A.: Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 15, 1155 (2016).CrossRefGoogle Scholar
Jiang, J., Liu, Z.K., Sun, Y., Yang, H.F., Rajamathi, C.R., Qi, Y.P., Yang, L.X., Chen, C., Peng, H., Hwang, C-C., Sun, S.Z., Mo, S-K., Vobornik, I., Fujii, J., Parkin, S.S.P., Felser, C., Yan, B.H., and Chen, Y.L.: Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017).CrossRefGoogle ScholarPubMed
Liang, A., Huang, J., Nie, S., Ding, Y., Gao, Q., Hu, C., He, S., Zhang, Y., Wang, C., Shen, B., Liu, J., Ai, P., Yu, L., Sun, X., Zhao, W., Lv, S., Liu, D., Li, C., Zhang, Y., Hu, Y., Xu, Y., Zhao, L., Liu, G., Mao, Z., Jia, X., Zhang, F., Zhang, S., Yang, F., Wang, Z., Peng, Q., Weng, H., Dai, X., Fang, Z., Xu, Z., Chen, C., and Zhou, X.J.: Electronic evidence for type II Weyl semimetal state in MoTe2. arXiv preprint arXiv:1604.01706 (2016).Google Scholar
Zhou, L., Xu, K., Zubair, A., Liao, A.D., Fang, W., Ouyang, F., Lee, Y.H., Ueno, K., Saito, R., Palaciios, T., Kong, J., and Dresselhaus, M.S.: Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 137, 11892 (2015).CrossRefGoogle ScholarPubMed
Zhou, J., Liu, F., Lin, J., Huang, X., Xia, J., Zhang, B., Zheng, Q., Wang, H., Zhu, C., Niu, L., Wang, X., Fu, W., Yu, P., Chang, T-R., Hsu, C-H., Wu, D., Jeng, H-T., Huang, Y., Lin, H., Shen, Z., Yang, C., Lu, L., Suenaga, K., Zhou, W., Pantelides, S.T., Liu, G., and Liu, Z.: Large-area and high-quality 2D transition metal telluride. Adv. Mater. 29, 1603471 (2017).CrossRefGoogle ScholarPubMed
Brown, B.E.: The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallogr. 20, 268 (1966).CrossRefGoogle Scholar
Shin, D., Lee, Y., Sasaki, M., Jeong, Y.H., Weickert, F., Betts, J.B., Kim, H.J., Kim, K.S., and Kim, J.: Violation of Ohm’s law in a Weyl metal. Nat. Mater. 16, 1096 (2017).CrossRefGoogle Scholar
Chen, F.C., Lv, H.Y., Luo, X., Lu, W.J., Pei, Q.L., Lim, G.T., Han, Y.Y., Zhu, X.B., Song, W.H., and Sun, Y.P.: Extremely large magnetoresistance in the type-II Weyl semimetal Mo Te2. Phys. Rev. B 94, 235154 (2016).CrossRefGoogle Scholar
Ali, M.N., Xiong, J., Flynn, S., Tao, J., Gibson, Q.D., Schoop, L.M., Liang, T., Haldolaarachchige, N., Harschberger, M., Ong, N.P., and Cava, J.: Large, non-saturating magnetoresistance in WTe2. Nature 514, 205 (2014).CrossRefGoogle ScholarPubMed
Yang, L.X., Liu, Z.K., Sun, Y., Peng, H., Yang, H.F., Zhang, T., Zhou, B., Zhang, Y., Guo, Y.F., Rahn, M., Prabhakaran, D., Hussain, Z., Mo, S.K., Felser, C., Yan, B., and Chen, Y.L.: Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728 (2015).CrossRefGoogle Scholar
Xu, C., Li, B., Jiao, W., Zhou, W., Qian, B., Sankar, R., Zhigadlo, N.D., Qi, Y., Qian, D., Chou, F.C., and Xu, X.: Topological type-II Dirac fermions approaching the Fermi level in a transition metal dichalcogenide NiTe2. Chem. Mater. 30, 4823 (2018).CrossRefGoogle Scholar
Liang, D.D., Wang, Y.J., Zhen, W.L., Yang, J., Weng, S.R., Yan, X., Han, Y.Y., Tong, W., Zhu, W.K., Pi, L., and Zhang, C.J.: Origin of planar Hall effect in type-II Weyl semimetal MoTe2. AIP Adv. 9, 055015 (2019).CrossRefGoogle Scholar
Gong, J-X., Yang, J., Ge, M., Wang, Y-J., Liang, D-D., Luo, L., Yan, X., Zhen, W-L., Weng, S-R., Pi, L., Zhang, C-J., and Zhu, W-K.: Non-stoichiometry effects on the extreme magnetoresistance in Weyl semimetal WTe2. Chin. Phys. Lett. 35, 097101 (2018).CrossRefGoogle Scholar
Forbes, A.W., Dulal, R.P., Bhattarai, N., Pegg, I.L., and Philip, J.: Experimental realization and magnetotransport properties of half-metallic Fe2Si. J. Appl. Phys. 125, 243902 (2019).CrossRefGoogle Scholar
Bestwick, A.J., Fox, E.J., Kou, X., Pan, L., Wang, K.L., and Goldhaber-Gordon, D.: Precise quantization of the anomalous Hall effect near zero magnetic field. Phys. Rev. Lett. 114, 187201 (2015).CrossRefGoogle ScholarPubMed
Chang, C-Z., Zhang, J., Feng, X., Shen, J., Zhang, Z., Guo, M., Li, K., Ou, Y., Wei, P., Wang, L-L., Ji, Z-Q., Feng, Y., Ji, S., Chen, X., Jia, J., Dai, X., Fang, Z., Zhang, S-C., He, K., Wang, Y., Lu, L., Ma, X-C., and Xue, Q-K.: Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167 (2013).CrossRefGoogle Scholar