Hostname: page-component-594f858ff7-7tp2g Total loading time: 0 Render date: 2023-06-09T23:09:05.826Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Time-dependent deformation behavior of interfacial intermetallic compound layers in electronic solder joints

Published online by Cambridge University Press:  31 January 2011

Chien-Wei Su
Department of Materials Science and Engineering, National Dong Hwa University, Hailien 974, Taiwan
Ying-Ta Chiu
Central Labs, Advanced Semiconductor Engineering, Inc., Kaohsiung 811, Taiwan
Get access


Using nanoindentation, this study develops the criteria to evaluate the creep performance of the intermetallic compounds (IMCs) formed at the interface of microelectronic solder joints. Regardless of crystal structure and melting point, the creep stress exponent (X), one of the parameters determining creep resistance, is in good agreement with tendencies of the work-hardening exponent (n) and also the ratio of yield stress (Y) to Young's modulus (E), which reveals the ability against plastic deformation.

Materials Communications
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Tu, K.N.Recent advances on electromigration in very-large-scale-integration of interconnects. J. Appl. Phys. 94, 5451 (2003)CrossRefGoogle Scholar
2.Chen, H.Y., Chen, C., Tu, K.N.Failure induced by thermomigration of interstitial Cu in Pb-free flip chip solder joints. Appl. Phys. Lett. 93, 122103 (2008)CrossRefGoogle Scholar
3.Zimprich, P., Saeed, U., Betzwar-Kotas, A., Weiss, B., Ipser, H.Mechanical size effects in miniaturized lead-free solder joints. J. Electron. Mater. 37, 102 (2008)CrossRefGoogle Scholar
4.Cugnoni, J., Botsis, J., Janczak-Rusch, J.Size and constraining effects in lead-free solder joints. Adv. Eng. Mater. 8, 184 (2006)CrossRefGoogle Scholar
5.Chang, C.W., Yang, S.C., Tu, C.T., Kao, C.R.Cross-interaction between Ni and Cu across Sn layers with different thickness. J. Electron. Mater. 36, 1455 (2007)CrossRefGoogle Scholar
6.Deng, X., Chawla, N., Chawla, K.K., Koopman, M.Deformation behavior of (Cu, Ag)–Sn intermetallics by nanoindentation. Acta Mater. 52, 4291 (2004)CrossRefGoogle Scholar
7.Yang, R.F., Lai, Y.S., Jian, S.R., Chen, J., Chen, R.S.Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples. Mater. Sci. Eng., A 485, 305 (2008)CrossRefGoogle Scholar
8.Song, J.M., Shen, Y.L., Su, C.W., Lai, Y.S., Chiu, Y.T.Strain rate dependence on nanoindentation responses of interfacial intermetallic compounds in electronic solder joints with Cu and Ag substrates. Mater. Trans. 50, 1231 (2009)CrossRefGoogle Scholar
9.Chromik, R.R., Wang, D.N., Shugar, A., Limata, L., Notis, M.R., Vinci, R.P.Mechanical properties of intermetallic compounds in the Au–Sn system. J. Mater. Res. 20, 2161 (2005)CrossRefGoogle Scholar
10.Lucas, J.P., Rhee, H., Subramanian, K.N.Mechanical properties of intermetallic compounds associated with Pb-free solder joints using nanoindentation. J. Electron. Mater. 32, 1375 (2003)CrossRefGoogle Scholar
11.Fisher-Cripps, A.C.A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng., A 385, 74 (2004)CrossRefGoogle Scholar
12.Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A., Suresh, S.Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001)CrossRefGoogle Scholar
13.Oliver, W.C., Pharr, G.M.Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992)CrossRefGoogle Scholar
14.Fisher-Cripps, A.C.Nanoindentation 2nd ed. (Springer-Verlag, New York 2004)146CrossRefGoogle Scholar
15.Lin, Y.C., Teo, J.W.R., Tung, S.K., Lam, K.H.High-temperature creep and hardness of eutectic 80Au/20Sn solder. J. Alloys Compd. 448, 340 (2008)Google Scholar
16.Powder Diffraction Files: No. 65-2303 (Cu6Sn5), No. 01-1240 (Cu3Sn), No. 25-1228 (Cu5Zn8), No. 44-1300 (Ag3Sn), No. 04-0845 (Ni3Sn4), No. 29-1155 (AgZn), No. 26-0956 (Ag5Zn8) (JCPDS, Newton Square, PA)Google Scholar
17.Massalski, T.B. Binary Alloy Phase Diagrams 2nd ed. Vol. 1 (American Society for Metals, Materials Park, OH 1990)96, 118, 1482, 1509, 2864Google Scholar
18.Song, J.M., Liu, P.C., Shih, C.L., Lin, K.L.Role of Ag in the formation of interfacial intermetallic phases in Sn–Zn soldering. J. Electron. Mater. 34, 1249 (2005)CrossRefGoogle Scholar
19.Yeh, P.Y., Song, J.M., Lin, K.L.Dissolution behavior of Cu and Ag substrates in molten solders. J. Electron. Mater. 35, 978 (2006)CrossRefGoogle Scholar
20.Hay, J.L., Pharr, G.M.Instrumented indentation testingASM Handbook Vol. 8 edited by H. Kuhn and D. Medlin (ASM International, Materials Park, OH 1990)232Google Scholar
21.Sharma, G., Ramanujan, R.V., Kutty, T.R.G., Prabhu, P.Indentation creep studies of iron aluminide intermetallic alloy. Intermetallics 13, 47 (2005)CrossRefGoogle Scholar