Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-bzjh5 Total loading time: 0.319 Render date: 2021-05-16T12:05:38.087Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Thermoelectric properties of spark plasma sintered lead telluride nanocubes

Published online by Cambridge University Press:  13 August 2015

Bayikadi Khasimsaheb
Affiliation:
University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110074, India
Sonnathi Neeleshwar
Affiliation:
University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110074, India
Mandava Srikanth
Affiliation:
University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110074, India
Sivaiah Bathula
Affiliation:
CSIR-Network of Institutes for Solar Energy, Materials Physics and Engineering Division, CSIR-National Physical Laboratory, New Delhi 110012, India
Bhasker Gahtori
Affiliation:
CSIR-Network of Institutes for Solar Energy, Materials Physics and Engineering Division, CSIR-National Physical Laboratory, New Delhi 110012, India
Avanish Kumar Srivsatava
Affiliation:
CSIR-Network of Institutes for Solar Energy, Materials Physics and Engineering Division, CSIR-National Physical Laboratory, New Delhi 110012, India
Ajay Dhar
Affiliation:
CSIR-Network of Institutes for Solar Energy, Materials Physics and Engineering Division, CSIR-National Physical Laboratory, New Delhi 110012, India
Amirthapandian Sankarakumar
Affiliation:
Materials Physics Division, Materials Science Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, India
Binaya Kumar Panigrahi
Affiliation:
Materials Physics Division, Materials Science Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, India
Sriparna Bhattacharya
Affiliation:
Departments of Physics and Astronomy, Clemson Nanomaterials Center, COMSET, Clemson University, Clemson, South Carolina 29634, USA
Ramakrishna Podila
Affiliation:
Departments of Physics and Astronomy, Clemson Nanomaterials Center, COMSET, Clemson University, Clemson, South Carolina 29634, USA
Apparao M. Rao
Affiliation:
Departments of Physics and Astronomy, Clemson Nanomaterials Center, COMSET, Clemson University, Clemson, South Carolina 29634, USA
Corresponding
Get access

Abstract

We report a cost-effective, surfactant-free, and scalable synthesis technique for lead telluride (PbTe) nanocubes by a chemical precipitation method. The high-resolution transmission electron microscopy studies indicated the evolution of nucleation centers (spherical) into nanocubes with the addition of the Pb and Te atoms. The spark plasma sintered PbTe nanocubes exhibited an enhanced Seebeck coefficient, S > +400 µV, higher than the reported values of the bulk PbTe over an extended temperature range of 300–425 K, and a moderate electrical conductivity, σ ∼ 8000 S/m at 300 K. A significant reduction in the lattice thermal conductivity was observed due to effective phonon scattering from the presence of numerous interfaces introduced by nanostructuring. The resulting figure-of-merit (ZT) ∼ 0.45 at 300 K is higher than the reported values at this temperature in other PbTe nanostructures. Moreover, a moderate thermoelectric compatibility factor makes the PbTe nanocubes a potential candidate for green energy generation.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

Dincer, I.: Renewable energy and sustainable development: A crucial review. Renewable Sustainable Energy Rev. 4(2), 157 (2000).CrossRefGoogle Scholar
Dresselhaus, M. and Thomas, I.: Alternative energy technologies. Nature 414(6861), 332 (2001).CrossRefGoogle ScholarPubMed
DiSalvo, F.J.: Thermoelectric cooling and power generation. Science 285(5428), 703 (1999).CrossRefGoogle ScholarPubMed
Rowe, D.M.: CRC Handbook of Thermoelectrics (CRC press, 1995).CrossRefGoogle Scholar
Puneet, P., Podila, R., Karakaya, M., Zhu, S., He, J., Tritt, T.M., Dresselhaus, M.S., and Rao, A.M.: Preferential scattering by interfacial charged defects for enhanced thermoelectric performance in few-layered n-type Bi2Te3. Sci. Rep. 3, 17 (2013).CrossRefGoogle ScholarPubMed
Min, G. and Rowe, D.: A serious limitation to the phonon glass electron crystal (PGEC) approach to improved thermoelectric materials. J. Mater. Sci. Lett. 18(16), 1305 (1999).CrossRefGoogle Scholar
Korkosz, R.J., Chasapis, T.C., Lo, S-h., Doak, J.W., Kim, Y.J., Wu, C-I., Hatzikraniotis, E., Hogan, T.P., Seidman, D.N., and Wolverton, C.: High ZT in p-type (PbTe)1−2x(PbSe)x(PbS)x thermoelectric materials. J. Am. Chem. Soc. 136(8), 3225 (2014).CrossRefGoogle ScholarPubMed
Poudeu, P.F., D'Angelo, J., Kong, H., Downey, A., Short, J.L., Pcionek, R., Hogan, T.P., Uher, C., and Kanatzidis, M.G.: Nanostructures versus solid solutions: Low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials. J. Am. Chem. Soc. 128(44), 14347 (2006).CrossRefGoogle ScholarPubMed
Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., and Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321(5888), 554 (2008).CrossRefGoogle ScholarPubMed
Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7(2), 105 (2008).CrossRefGoogle ScholarPubMed
Chen, G., Dresselhaus, M., Dresselhaus, G., Fleurial, J-P., and Caillat, T.: Recent developments in thermoelectric materials. Int. Mater. Rev. 48(1), 45 (2003).CrossRefGoogle Scholar
Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E., and Kanatzidis, M.G.: Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303(5659), 818 (2004).CrossRefGoogle Scholar
Girard, S.N., He, J., Zhou, X., Shoemaker, D., Jaworski, C.M., Uher, C., Dravid, V.P., Heremans, J.P., and Kanatzidis, M.G.: High performance Na-doped PbTe–PbS thermoelectric materials: Electronic density of states modification and shape-controlled nanostructures. J. Am. Chem. Soc. 133(41), 16588 (2011).CrossRefGoogle ScholarPubMed
Pei, Y., Shi, X., LaLonde, A., Wang, H., Chen, L., and Snyder, G.J.: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473(7345), 66 (2011).CrossRefGoogle ScholarPubMed
Biswas, K., He, J., Blum, I.D., Wu, C-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., and Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489(7416), 414 (2012).CrossRefGoogle ScholarPubMed
Hicks, L.D. and Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B: Condens. Matter 47(19), 12727 (1993).CrossRefGoogle ScholarPubMed
Hicks, L.D. and Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B: Condens. Matter 47(24), 16631 (1993).CrossRefGoogle ScholarPubMed
Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856), 597 (2001).CrossRefGoogle ScholarPubMed
Harman, T., Taylor, P., Spears, D., and Walsh, M.: Thermoelectric quantum-dot superlattices with high ZT. J. Electron. Mater. 29(1), L1 (2000).CrossRefGoogle Scholar
Harman, T.C., Taylor, P.J., Walsh, M.P., and LaForge, B.E.: Quantum dot superlattice thermoelectric materials and devices. Science 297(5590), 2229 (2002).CrossRefGoogle ScholarPubMed
Heremans, J.P., Thrush, C.M., Morelli, D.T., and Wu, M-C.: Thermoelectric power of bismuth nanocomposites. Phys. Rev. Lett. 88(21), 216801 (2002).CrossRefGoogle ScholarPubMed
Mokari, T., Zhang, M., and Yang, P.: Shape, size, and assembly control of PbTe nanocrystals. J. Am. Chem. Soc. 129(32), 9864 (2007).CrossRefGoogle ScholarPubMed
Urban, J.J., Talapin, D.V., Shevchenko, E.V., and Murray, C.B.: Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films. J. Am. Chem. Soc. 128(10), 3248 (2006).CrossRefGoogle ScholarPubMed
Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., and Alivisatos, A.P.: Shape control of CdSe nanocrystals. Nature 404(6773), 59 (2000).Google ScholarPubMed
Wang, W., Poudel, B., Wang, D., and Ren, Z.: Synthesis of PbTe nanoboxes using a solvothermal technique. Adv. Mater. 17(17), 2110 (2005).CrossRefGoogle Scholar
Zhang, L., Yu, J.C., Mo, M., Wu, L., Kwong, K.W., and Li, Q.: A general in situ hydrothermal rolling-up formation of one-dimensional, single-crystalline lead telluride nanostructures. Small 1(3), 349 (2005).CrossRefGoogle ScholarPubMed
Fardy, M., Hochbaum, A.I., Goldberger, J., Zhang, M.M., and Yang, P.: Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater. 19(19), 3047 (2007).CrossRefGoogle Scholar
Murphy, J.E., Beard, M.C., Norman, A.G., Ahrenkiel, S.P., Johnson, J.C., Yu, P., Micic, O.I., Ellingson, R.J., and Nozik, A.J.: PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 128(10), 3241 (2006).CrossRefGoogle ScholarPubMed
Lee, S.H., Shim, W., Jang, S.Y., Roh, J.W., Kim, P., Park, J., and Lee, W.: Thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method. Nanotechnology 22(29), 295707 (2011).CrossRefGoogle ScholarPubMed
Zhu, T., Chen, X., Meng, X., Zhao, X., and He, J.: Anisotropic growth of cubic PbTe nanoparticles to nanosheets: Controlled synthesis and growth mechanisms. Cryst. Growth Des. 10(8), 3727 (2010).CrossRefGoogle Scholar
Zou, G., Liu, Z., Wang, D., Jiang, C., and Qian, Y.: Selected-control solvothermal synthesis of nanoscale hollow spheres and single-crystal tubes of PbTe. Eur. J. Inorg. Chem. 2004(22), 4521 (2004).CrossRefGoogle Scholar
Martin, J., Nolas, G., Zhang, W., and Chen, L.: PbTe nanocomposites synthesized from PbTe nanocrystals. Appl. Phys. Lett. 90(22), 222112 (2007).CrossRefGoogle Scholar
Gupta, S., Neeleshwar, S., Kumar, V., and Chen, Y.: Synthesis of bismuth telluride nanostructures by refluxing method. Adv. Mat. Lett. 3(1), 5054 (2012).CrossRefGoogle Scholar
Mlowe, S., Nejo, A., Pullabhotla, V., Mubofu, E., Ngassapa, F., O'Brien, P., and Revaprasadu, N.: Lead chalcogenides stabilized by anacardic acid. Mater. Sci. Semicond. Process. 16(2), 263 (2013).CrossRefGoogle Scholar
Dong, J., Liu, W., Li, H., Su, X., Tang, X., and Uher, C.: In situ synthesis and thermoelectric properties of PbTe–graphene nanocomposites by utilizing a facile and novel wet chemical method. J. Mater. Chem. A 1(40), 12503 (2013).CrossRefGoogle Scholar
Burda, C., Chen, X., Narayanan, R., and El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025 (2005).CrossRefGoogle ScholarPubMed
Kuo, C-H., Jeng, M-S., Ku, J-R., Wu, S-K., Chou, Y-W., and Hwang, C-S.: p-type PbTe thermoelectric bulk materials with nanograins fabricated by attrition milling and spark plasma sintering. J. Electron. Mater. 38(9), 1956 (2009).CrossRefGoogle Scholar
Puneet, P., Podila, R., Zhu, S., Skove, M.J., Tritt, T.M., He, J., and Rao, A.M.: Enhancement of thermoelectric performance of ball-milled bismuth due to spark-plasma-sintering-induced interface modifications. Adv. Mater. 25(7), 1033 (2013).CrossRefGoogle ScholarPubMed
Datta, A., Popescu, A., Woods, L., and Nolas, G.S.: The bottom-up approach to bulk thermoelectric materials with nano-scale domains. In CRC Handbook on Thermoelectrics and its Energy Harvesting on Materials, Preparation and Characterization. (Taylor & Francis Group, 2012).Google Scholar
Finefrock, S.W., Zhang, G., Bahk, J-H., Fang, H., Yang, H., Shakouri, A., and Wu, Y.: Structure and thermoelectric properties of spark plasma sintered ultrathin PbTe nanowires. Nano Lett. 14(6), 34663473 (2014).CrossRefGoogle ScholarPubMed
Kim, H., Han, M-K., Yo, C-H., Lee, W., and Kim, S-J.: Effects of Bi2Se3 nanoparticle inclusions on the microstructure and thermoelectric properties of Bi2Te3-based nanocomposites. J. Electron. Mater. 41(12), 3411 (2012).CrossRefGoogle Scholar
Liu, W., Yan, X., Chen, G., and Ren, Z.: Recent advances in thermoelectric nanocomposites. Nano Energy 1(1), 42 (2012).CrossRefGoogle Scholar
Tai, G., Zhou, B., and Guo, W.: Structural characterization and thermoelectric transport properties of uniform single-crystalline lead telluride nanowires. J. Phys. Chem. C 112(30), 11314 (2008).CrossRefGoogle Scholar
Moyzhes, B. and Nemchinsky, V.: Thermoelectric figure of merit of metal–semiconductor barrier structure based on energy relaxation length. Appl. Phys. Lett. 73(13), 1895 (1998).CrossRefGoogle Scholar
Mahan, G. and Sofo, J.: The best thermoelectric. Proc. Natl. Acad. Sci. 93(15), 7436 (1996).CrossRefGoogle ScholarPubMed
Ravich, Y.I., Efimova, B., and Smirnov, I.: Applications of lead chalcogenides. In Semiconducting Lead Chalcogenides (Springer, New York, NY, 1970); pp. 323.CrossRefGoogle Scholar
Minnich, A., Dresselhaus, M., Ren, Z., and Chen, G.: Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2(5), 466 (2009).CrossRefGoogle Scholar
Martin, J., Wang, L., Chen, L., and Nolas, G.: Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys. Rev. B 79(11), 115311 (2009).CrossRefGoogle Scholar
Kishimoto, K. and Koyanagi, T.: Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties. J. Appl. Phys. 92(5), 2544 (2002).CrossRefGoogle Scholar
Popescu, A., Woods, L., Martin, J., and Nolas, G.: Model of transport properties of thermoelectric nanocomposite materials. Phys. Rev. B 79(20), 205302 (2009).CrossRefGoogle Scholar
Fan, Z., Mohammad, S.N., Kim, W., Aktas, Ö., Botchkarev, A.E., and Morkoç, H.: Very low resistance multilayer Ohmic contact to n-GaN. Appl. Phys. Lett. 68(12), 1672 (1996).CrossRefGoogle Scholar
Snyder, G.J. and Ursell, T.S.: Thermoelectric efficiency and compatibility. Phys. Rev. Lett. 91(14), 148301 (2003).CrossRefGoogle ScholarPubMed
Ursell, T. and Snyder, G.: Compatibility of segmented thermoelectric generators. In Thermoelectrics Proceedings ICT'02 Twenty-First International Conference on IEEE, 2002; pp. 412.Google Scholar
Maciá, E.: Compatibility factor of segmented thermoelectric generators based on quasicrystalline alloys. Phys. Rev. B 70(10), 100201 (2004).CrossRefGoogle Scholar
Supplementary material: File

Khasimsaheb supplementary material

Supplementary figures

Download Khasimsaheb supplementary material(File)
File 2 MB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Thermoelectric properties of spark plasma sintered lead telluride nanocubes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Thermoelectric properties of spark plasma sintered lead telluride nanocubes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Thermoelectric properties of spark plasma sintered lead telluride nanocubes
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *