Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-21T10:49:56.390Z Has data issue: false hasContentIssue false

Thermodynamic analysis of solid-state metal/Si interfacial reactions

Published online by Cambridge University Press:  31 January 2011

Byeong-Joo Lee
Materials Evaluation Center, Korea Research Institute of Standards and Science, Yusong P.O. Box 102, Taejon 305-600, Republic of Korea
Get access


An attempt has been made to interpret the experimentally reported transitions of layer sequences during the Co/Si, Ti/Si, and Ni/Si interfacial reactions in a consistent way, and to build a thermodynamic calculation scheme that enables it. The basic ideas are that the silicide with the highest driving force of formation under a metastable local equilibrium state at an interface would form first at the lowest temperature, and that when several silicides can nucleate simultaneously and compete for growth at an initial stage of a high temperature reaction, the one whose composition is closest to those of surrounding phases would form a continuous interfacial layer first and grow thicker. A critical review of literature information has also been made in order to clarify the first-forming silicide and silicide formation sequence in each metalySi interfacial reaction. The observed first-forming crystalline silicides, CoSi, Ti5Si3, and Ni2Si, in each metalySi interfacial reaction were in agreement with the present prediction based on the first idea. The reason why Co2Si and C49 TiSi2 have frequently been observed in high temperature Co/Si and TiySi reactions as if they were the first-forming crystalline silicides could also be explained based on the second idea. By combining both ideas, a general thermodynamic calculation scheme that can be applied for analysis, rationalization, and even prediction of interfacial reactions between different materials could be suggested.

Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Waiser, R.M. and Bene, R.W., Appl. Phys. Lett. 28, 624 (1976).Google Scholar
2.Tsaur, B. Y., Lau, S.S., Mayer, J.W., and Nicolet, M-A., Appl. Phys. Lett. 38, 922 (1981).CrossRefGoogle Scholar
3.Pretorius, R., in Thin Films and Interfaces II, edited by Baglin, J. E.E, Campbell, D. R., and Chu, W. K. (Mater. Res. Soc. Symp. Proc. 25, Elsevier, New York, 1984), p. 15.Google Scholar
4.Pretorius, R., Thin Solid Films 290/291, 477 (1996).CrossRefGoogle Scholar
5.Ottaviani, G., Thin Solid Films 140, 3 (1986).CrossRefGoogle Scholar
6.Bene, R. W., J. Appl. Phys. 61, 1826 (1987).CrossRefGoogle Scholar
7.Gösele, U. and Tu, K.N., J. Appl. Phys. 53, 3252 (1982).CrossRefGoogle Scholar
8.Gösele, U. and Tu, K.N., J. Appl. Phys. 66, 2619 (1989).CrossRefGoogle Scholar
9.d'Heurle, F.M. and Gas, P., J. Mater. Res. I, 205 (1986).CrossRefGoogle Scholar
10.d'Heurle, F.M., J. Mater. Res. 3, 167 (1988).CrossRefGoogle Scholar
11.Zhang, L. and Ivey, D.G., J. Appl. Phys. 71, 4314 (1992).CrossRefGoogle Scholar
12.Zhang, L. and Ivey, D. G., Thin Solid Films 245, 234 (1994).Google Scholar
13.Lee, B-J., Hwang, N.M., and Lee, H. M., Acta Mater. 45, 1867 (1997).CrossRefGoogle Scholar
14.Lee, B-J., Acta Mater. 45, 3993 (1997).CrossRefGoogle Scholar
15.Lee, B-J., Scripta Mater. 38, 499 (1998).CrossRefGoogle Scholar
16.Miura, H., Ma, E., and Thompson, C.V., J. Appl. Phys. 70, 4287 (1991).CrossRefGoogle Scholar
17.Wang, W.H. and Wang, W. K., J. Appl. Phys. 76, 1578 (1994).CrossRefGoogle Scholar
18.Choi, S-D., CALPHAD 16, 151 (1992).Google Scholar
19.Seifert, H.J., Lukas, H. L., and Petzow, G., Z. Metallkd. 87, 2 (1996).Google Scholar
20.Lee, B-J., Korea Research Institute of Standards and Science, Taejon, unpublished work (1993).Google Scholar
21.Kaufman, L. and Bernstein, H., Computer Calculation of Phase Diagrams (Academic Press, New York, 1970).Google Scholar
22.Hillert, M., Physica (Amsterdam) 103B, 31 (1981).Google Scholar
23.Inden, G., Bull. Alloy Phase Diagrams 2, 412 (1981).CrossRefGoogle Scholar
24.Hillert, M. and Jari, M., CALPHAD 2, 227 (1978).CrossRefGoogle Scholar
25.Hillert, M. and Staffansson, L. I., Acta Chem. Scand. 24, 3618 (1970).CrossRefGoogle Scholar
26.Sundman, B. and Ågren, J., J. Phys. Chem. Solids 42, 297 (1981).CrossRefGoogle Scholar
27.Chen, H. S. and Turnbull, D., J. Chem. Phys. 48, 2560 (1968).CrossRefGoogle Scholar
28.Turnbull, D., J. Appl. Phys. 21, 1022 (1950).CrossRefGoogle Scholar
29.Hoffman, J. D., J. Chem. Phys. 29, 1192 (1958).CrossRefGoogle Scholar
30.Jones, D. R. H. and Chadwick, G. A., Philos. Mag. 24, 995 (1971).CrossRefGoogle Scholar
31.Thompson, C. V. and Spaepen, F., Acta Metall. 27, 1855 (1979).CrossRefGoogle Scholar
32.Gong, S.F. and Hentzell, H. T. G., J. Appl. Phys. 68, 4542 (1990).CrossRefGoogle Scholar
33.Dubey, K.S. and Rao, P. R., Acta Metall. 32, 91 (1984).CrossRefGoogle Scholar
34.Lele, S., Dubey, K. S., and Rao, P. R., Curr. Sci. 54, 994 (1985).Google Scholar
35.Bormann, R. and Zöltzer, K., Phys. Status Solidi (a) 131, 691 (1992).CrossRefGoogle Scholar
36.Dinsdale, A.T., CALPHAD 15, 317 (1991).CrossRefGoogle Scholar
37.Holloway, K., Sinclair, R., and Nathan, M., J. Vac. Sci. Technol. A 7, 1479 (1989).CrossRefGoogle Scholar
38.van Gurp, G.J. and Langereis, C., J. Appl. Phys. 46, 4301 (1975).CrossRefGoogle Scholar
39.Lau, S.S., Mayer, J. W., and Tu, K.N., J. Appl. Phys. 49, 4005 (1978).CrossRefGoogle Scholar
40.Botha, A.P. and Pretorius, R., Thin Solid Films 93, 127 (1982).CrossRefGoogle Scholar
41.Tu, K.N., Ottaviani, G., Thompson, R. D., and Mayer, J. W., J. Appl. Phys. 53, 4406 (1982).CrossRefGoogle Scholar
42.Lim, B.S., Ma, E., Nicolet, M-A., and Natan, M., J. Appl. Phys. 61, 5027 (1987).CrossRefGoogle Scholar
43.Xia, W., Hewett, C.A., Fernandes, M., Lau, S. S., and Poker, D. B., J. Appl. Phys. 65, 2300 (1989).CrossRefGoogle Scholar
44.Zaring, C., Svensson, B. G., and Östling, M., in Advanced Metallization and Processing for Semiconductor Devices and Circuits II, edited by Katz, A., Murarka, S. P., Nissim, Y. I., and Harper, J. M. E. (Mater. Res. Soc. Symp. Proc. 260, Pittsburgh, PA, 1992), p. 157.Google Scholar
45.Nathan, M., J. Appl. Phys. 63, 5534 (1988).CrossRefGoogle Scholar
46.Shim, J. Y., Kwak, J. S., and Baik, H. K., Thin Solid Films 288, 309 (1996).CrossRefGoogle Scholar
47.Lien, C. D., Nicolet, M-A., Pai, C. S., and Lau, S. S., Appl. Phys. A36, 153 (1985).CrossRefGoogle Scholar
48.Ma, E., Meng, W.J., Johnson, W.L., Nicolet, M-A., and Nathan, M., Appl. Phys. Lett. 53, 2033 (1988).CrossRefGoogle Scholar
49.Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J. M., and Jacobson, D. C., J. Appl. Phys. 57, 1795 (1985).CrossRefGoogle Scholar
50.Kato, H. and Nakamura, Y., Thin Solid Films 34, 135 (1976).CrossRefGoogle Scholar
51.Maa, J-S., Lin, C-J., Liu, J.H., and Liu, Y-C., Thin Solid Films 64, 439 (1979).CrossRefGoogle Scholar
52.Muraka, S. P. and Fraser, D. B., J. Appl. Phys. 51, 342 (1980).CrossRefGoogle Scholar
53.Révész, P., Gyimesi, J., and Zsoldos, É., J. Appl. Phys. 54, 1860 (1983).CrossRefGoogle Scholar
54.Hung, L.S., Gyulai, J., Mayer, J.W., Lau, S. S., and Nicolet, M-A., J. Appl. Phys. 54, 5076 (1983).CrossRefGoogle Scholar
55.Butz, R., Rubloff, G. W., Tan, T. Y., and Ho, P. S., Phys. Rev. B 30, 5421 (1984).CrossRefGoogle Scholar
56.van Houtum, H.J. W. and Raaijmakers, I.J. M. M., in Thin Films—Interfaces and Phenomena, edited by Nemanich, R. J., Ho, P.S., and Lau, S. S. (Mater. Res. Soc. Symp. Proc. 54, Pittsburgh, PA, 1986), p. 37.Google Scholar
57.Bentini, G.G., Nipoti, R., Armigliato, A., Berti, M., Drigo, A. V., and Cohen, C., J. Appl. Phys. 57, 270 (1985).CrossRefGoogle Scholar
58.Raaijmakers, I. J.M. M. and Kim, K-B., J. Appl. Phys. 67, 6255 (1990).CrossRefGoogle Scholar
59.Ogawa, S., Kouzaki, T., Yoshida, T., and Sinclair, R., J. Appl. Phys. 70, 827 (1991).CrossRefGoogle Scholar
60.Wang, M. H. and Chen, L. J., J. Appl. Phys. 71, 5918 (1992).CrossRefGoogle Scholar
61.Ma, Z., Xu, Y., Allen, L.H., and Lee, S., J. Appl. Phys. 74, 2954 (1993).CrossRefGoogle Scholar
62.Saenger, K.L., Cabral, C. Jr, Clevenger, L. A., and Roy, R. A., J. Appl. Phys. 77, 5156 (1995).CrossRefGoogle Scholar
63.Clevenger, L.A., Cabral, C. Jr, Roy, R. A., Lavoie, C., JordanSweet, J., Brauer, S., Morales, G., Ludwig, K. F. Jr, and Stephenson, G. B., Thin Solid Films 289, 220 (1996).CrossRefGoogle Scholar
64.Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 5240 (1985).CrossRefGoogle Scholar
65.Tu, K.N., Chu, W. K., and Mayer, J.W., Thin Solid Films 25, 403 (1975).CrossRefGoogle Scholar
66.Tu, K.N., Alessandrini, E. I., Chu, W.K., Kraütle, H., and Mayer, J. W., Jpn. J. Appl. Phys. Suppl. 2, 669 (1974).CrossRefGoogle Scholar
67.Olowolafe, J. O., Nicolet, M-A., and Mayer, J.W., Thin Solid Films 38, 143 (1976).CrossRefGoogle Scholar
68.Canali, C., Majni, G., Ottaviani, G., and Celotti, G., J. Appl. Phys. 50, 255 (1979).CrossRefGoogle Scholar
69.Ottaviani, G., J. Vac. Sci. Technol. 16, 1112 (1979).CrossRefGoogle Scholar
70.d'Heurle, F.M., Petersson, C. S., Stolt, L., and Strizker, B., J. Appl. Phys. 53, 5678 (1982).CrossRefGoogle Scholar
71.d'Heurle, F.M., Petersson, C.S., Baglin, J.E.E, La Placa, S.J., and Wong, C. Y., J. Appl. Phys. 55, 4208 (1984).CrossRefGoogle Scholar
72.Clevenger, L.A., Thompson, C.V., Cammarata, R.C., and Tu, K.N., Appl. Phys. Lett. 52, 795 (1988).CrossRefGoogle Scholar
73.Clevenger, L.A. and Thompson, C.V., J. Appl. Phys. 67, 1325 (1990).CrossRefGoogle Scholar
74.Yamauchi, S., Hirai, M., Kusaka, M., Iwami, M., Nakamura, H., Yokota, Y., Akiyama, A., and Watabe, H., Jpn. J. Appl. Phys. 32, 3237 (1993).CrossRefGoogle Scholar
75.Zalar, A., Hofmann, S., Pimentel, F., and Panjan, P., Surf. Interface Anal. 21, 560 (1994).CrossRefGoogle Scholar
76.Mangelinck, D., Gas, P., Grob, A., Pichaud, B., and Thomas, O., J. Appl. Phys. 79, 4078 (1996).CrossRefGoogle Scholar
77.Rao, Z., Williams, J. S., Pogany, A. P., Sood, D. K., and Collins, G. A., J. Appl. Phys. 77, 3782 (1995).CrossRefGoogle Scholar
78.Setton, M. and Van der Spiegel, J., Appl. Surf. Sci. 38, 62 (1989).CrossRefGoogle Scholar
79.Fenske, F., Schöpke, A., Schulze, S., and Selle, B., Appl. Surf. Sci. 104/105, 218 (1996).CrossRefGoogle Scholar
80.Byun, J. S. and Kim, H. J., J. Appl. Phys. 78, 6784 (1995).CrossRefGoogle Scholar