Hostname: page-component-797576ffbb-5676f Total loading time: 0 Render date: 2023-12-07T04:04:49.641Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Synthesis and self-assembly of zinc oxide nanoparticles with septahedral morphology

Published online by Cambridge University Press:  31 January 2011

Nelson S. Bell*
Sandia National Laboratories, Albuquerque, New Mexico 87185
David R. Tallant
Sandia National Laboratories, Albuquerque, New Mexico 87185
Rebecca Raymond
Sandia National Laboratories, Albuquerque, New Mexico 87185
Timothy J. Boyle
Sandia National Laboratories, Albuquerque, New Mexico 87185
a) Address all correspondence to this author. e-mail:
Get access


The formation of 10-nm ZnO nanopyramids using a simple synthetic route has been isolated from the reaction of Zn(OAc)2·2H2O in 1,4-butanediol followed by ripening at 90 °C. This was accomplished by establishing control over the Ostwald ripening process through the use of a carboxylic acid specific adsorbate. Using a variety of analytical methods, it is proposed that the carboxylate groups in the acetate precursor stabilize the {101} habit planes, creating septahedral shapes or nanopyramids. Particle assembly into crystallographically oriented dimers was observed with high specificity, and the association mechanism is suggested to relate to the crystal polarity and the variation in specific adsorption of the carboxylic acid to the surface facets. These materials are a candidate for biological labeling applications in living cells.

Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1Alivisatos, P.A.: The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47 2004Google Scholar
2Jun, Y-W., Lee, J-H., Choi, J-S.Cheon, J.: Symmetry-controlled colloidal nanocrystals: Nonhydrolytic chemical synthesis and shape determining parameters. J. Phys. Chem. B 109, 14795 2005Google Scholar
3Gao, P., Xie, Y.Li, Z.: Controlling the size of BaF2 nanocubes from 1000 to 10 nm. Eur. J. Inorg. Chem. 2006, 3261 2006Google Scholar
4Mai, H-X., Sun, L-D., Zhang, Y-W., Si, R., Feng, W., Zhang, H-P., Liu, H-C.Yan, C-H.: Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 109, 24380 2005Google Scholar
5Yang, S.Gao, L.: Controlled synthesis and self-assembly of CeO2 nanocubes. J. Am. Chem. Soc. 128, 9330 2006Google Scholar
6Gou, L.Murphy, C.J.: Controlling the size of Cu2O nanocubes from 200 to 25 nm. J. Mater. Chem. 14, 735 2004Google Scholar
7Mirkovic, T., Hines, M.A., Nair, P.S.Scholes, G.D.: Single source precursor route for the synthesis of EuS nanocrystals. Chem. Mater. 17, 3451 2005Google Scholar
8Lee, C.H., Kim, M., Kim, T., Kim, A., Paek, J., Lee, J.W., Choi, S-Y., Kim, K., Park, J-B.Lee, K.: Ambient pressure syntheses of size-controlled corundum-type In2O3 nanocubes. J. Am. Chem. Soc. 128, 9326 2006Google Scholar
9Tang, Q., Zhou, W., Zhang, W., Ou, S., Jiang, K., Yu, W.Qian, Y.: Size-controllable growth of single crystal In(OH)3 and In2O3 nanocubes. Cryst. Growth Des. 5, 147 2005Google Scholar
10Gregg, K.A., Perera, S.C., Lawes, G., Shinozaki, S.Brock, S.L.: Controlled synthesis of MnP nanorods: Effect of shape anisotropy on magnetization. Chem. Mater. 18, 879 2006Google Scholar
11Jun, Y-W., Jung, Y-Y.Cheon, J.: Architectural control of magnetic semiconductor nanocrystals. J. Am. Chem. Soc. 124, 615 2002Google Scholar
12Zhou, G., Lu, M., Xiu, Z., Wang, S., Zhang, H., Zhou, Y.Wang, S.: Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process. J. Phys. Chem. B 110, 6543 2006Google Scholar
13Ahmadi, T.S., Wang, Z.L., Green, T.C., Henglein, A.ElSayed, M.A.: Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924 1996Google Scholar
14Ahmadi, T.S., Wang, Z.L., Henglein, A.ElSayed, M.A.: “Cubic” colloidal platinum nanoparticles. Chem. Mater. 8, 1161 1996Google Scholar
15Feng, J.Zeng, H.C.: Size-controlled growth of Co3O4 nanocubes. Chem. Mater. 15, 2829 2003Google Scholar
16Chen, M., Kim, J., Liu, J.P., Fan, H.Y.Sun, S.H.: Synthesis of FePt nanocubes and their oriented self-assembly. J. Am. Chem. Soc. 128, 7132 2006Google Scholar
17Copper, Silver, Gold, and Zinc, Cadmium, Mercury Oxides and Hydroxides, IUPAC Solubility Data Series,,23 edited by T.P. Dirkse (Pergamon Press, New York) 1986 156Google Scholar
18Tang, Z.K., Wong, G.K.L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H.Segawa, Y.: Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 72, 3270 1998Google Scholar
19Anpo, M., Chiba, K., Tomonari, M., Coluccia, S., Che, M.Fox, M.A.: Photocatalysis on native and platinum-loaded TiO2 and ZnO catalysts—Origin of different reactivities on wet and dry metal-oxides. J. Chem. Soc. Jpn. 64, 543 1991Google Scholar
20Lorenz, C., Emmerling, A., Fricke, J., Schmidt, T., Hilgendorff, M., Spanhel, L.Muller, G.: Aerogels containing strongly photoluminescing zinc oxide nanocrystals. J. Non-Cryst. Solids 238, 1 1998Google Scholar
21Weissenrieder, K.S.Muller, J.: Conductivity model for sputtered ZnO–thin film gas sensors. Thin Solid Films 300, 30 1997Google Scholar
22Rensmo, H., Keis, K., Lindstrom, H., Dodergren, S., Solbrand, A., Hagfeldt, A., Lindquist, S.E., Wang, L.N.Muhammed, M.: High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B 101, 2598 1997Google Scholar
23Pacholski, C., Kornowski, A.Weller, H.: Self-assembly of ZnO: From nanodots, to nanorods. Angew. Chem., Int. Ed. Engl. 41, 1188 2002Google Scholar
24Zitoun, D., Pinna, N., Frolet, N.Belin, C.: Single crystal manganese oxide multipods by oriented attachment. J. Am. Chem. Soc. 127, 15034 2005Google Scholar
25Kohls, M., Schmidt, T., Katschorek, H., Spanhel, L., Muller, G., Mais, N., Wolf, A.Forchel, A.: A simple colloidal route to planar micropatterned Er@ZnO amplifiers. Adv. Mater. 11, 288 1999Google Scholar
26Andelman, T., Gong, Y., Polking, M., Yin, M., Kuskovsky, I., Nuemark, G.O’Brien, S.: Morphological control and photoluminescence of zinc oxide nanocrystals. J. Phys. Chem. B 109, 14314 2005Google Scholar
27Choi, S-H., Kim, E-G., Park, J., An, K., Lee, N., Kim, S.C.Hyeon, T.: Large-scale synthesis of hexagonal pyramid-shaped ZnO nanocrystals from thermolysis of Zn–oleate complex. J. Phys. Chem. B 109, 14792 2005Google Scholar
28Joo, J., Kwon, S.G., Yu, J.H.Hyeon, T.: Synthesis of ZnO nanocrystals with cone, hexagonal cone, and rod shapes via non-hydrolytic ester elimination sol-gel reactions. Adv. Mater. 17, 1873 2005Google Scholar
29Chen, Y., Kim, M., Lian, G., Johnson, M.B.Peng, X.: Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals. J. Am. Chem. Soc. 127, 13331 2005Google Scholar
30Koch, U., Fojtik, A., Weller, H.Henglein, A.: Photochemistry and semiconductor colloids. 13. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem. Phys. Lett. 122, 507 1985Google Scholar
31Bahnemann, D.W., Kormann, C.Hoffmann, M.R.: Preparation and characterization of quantum size zinc–oxide—A detailed spectroscopic study. J. Phys. Chem. 91, 3789 1987Google Scholar
32Hu, Z., Oskam, G.Searson, P.C.: Influence of solvent on the growth of ZnO nanoparticles. J. Colloid Interface Sci. 263, 454 2003Google Scholar
33Brus, E.: Electronic wave-functions in semiconductor clusters—Experiment and theory. J. Phys. Chem. 90, 2555 1986Google Scholar
34Spanhel, L.Anderson, M.A.: Semiconductor clusters in the sol-gel process—Quantized aggregation, gelation, and crystal-growth in concentrated ZnO colloids. J. Am. Chem. Soc. 113, 2826 1991Google Scholar
35Schmidt, T., Muller, G., Spanhel, L., Kerkel, K.Forchel, A.: Activation of 1.54 mu m Er3+ fluorescence in concentrated II–VI semiconductor cluster environments. Chem. Mater. 10, 65 1998Google Scholar
36Tokumoto, M.S., Briois, V., Santilli, C.V.Pulcinelli, S.H.: Preparation of ZnO nanoparticles: Structural study of the molecular precursor. J. Sol.-Gel Sci. Technol. 26, 547 2003Google Scholar
37Murray, C.B., Norris, D.J.Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706 1993Google Scholar
38Sakohara, S., Ishida, M.Anderson, M.A.: Visible luminescence and surface properties of nanosized ZnO colloids prepared by hydrolyzing zinc acetate. J. Phys. Chem. B 102, 10169 1998Google Scholar
39Peng, X.G., Wickham, J.Alivisatos, A.P.: Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 120, 5343 1998Google Scholar
40Muelenkamp, E.A.: Size dependence of the dissolution of ZnO nanoparticles. J. Phys. Chem. B 102, 7764 1998Google Scholar
41Vanheusden, K., Warren, W., Seager, C., Tallant, D., Voigt, J.Gnade, B.: Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 1996Google Scholar
42Studenikin, S., Golego, N.Cocivera, M.: Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 84, 2287 1998Google Scholar
43Hsu, J.W., Tallant, D.R., Simpson, R.L., Missert, N.A.Copeland, R.G.: Luminescent properties of solution-grown ZnO nanorods. Appl. Phys. Lett. 88, 252103 2006Google Scholar
44Yang, M., Pang, G., Li, J., Jiang, L.Feng, S.: Preparation of ZnO nanowires in a neutral aqueous system: Concentration effect on the orientation attachment process. Eur. J. Inorg. Chem. 2006, 3818 2006Google Scholar
45Tang, Z., Zhang, Z., Wang, Y., Glotzer, S.C.Kotov, N.A.: Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274 2006Google Scholar