Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-ttsf8 Total loading time: 0.247 Render date: 2021-08-04T17:12:21.177Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Synthesis and optical absorption properties of Au–Ag nanoparticle bimetal dispersed SiO2 composite films

Published online by Cambridge University Press:  03 January 2014

Yan Li
Affiliation:
Department of Inorganic Nonmetallic Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Bo-Ping Zhang
Affiliation:
Department of Inorganic Nonmetallic Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cui-Hua Zhao
Affiliation:
Department of Inorganic Nonmetallic Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; and College of Materials Science and Engineering, Guangxi University, Nanning 530004, China
Liang Zou
Affiliation:
Department of Inorganic Nonmetallic Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Jin-Xian Zhao
Affiliation:
Department of Inorganic Nonmetallic Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Corresponding
E-mail address:
Get access

Abstract

Gold–silver (Au–Ag) bimetal dispersed SiO2 composite films were fabricated via a chemical solution approach combining sol–gel with a spin-coating process, and they were investigated by transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and ultraviolet-visible absorption spectra. TEM image indicated that Ag and/or Au nanoparticles (NPs) had a spherical structure with large size distributions. The XPS results demonstrated that the presence of both Ag and Au NPs in the composite film is in each metal state. The optical absorption spectra of the composite film further confirmed the formation of nanosized Au and Ag particles, given by the two surface plasmon resonance (SPR) peaks. Unlike other Au–Ag composite films, these two SPR peaks had almost the same intensity, which is rarely obtained by a chemical approach. Compared to optical absorption spectra calculated by the modified Mie theory, the location and intensity of SPR peaks had a little difference, which could be attributed to large size distributions of Ag and Au bimetal NPs in the composite film along with the experimental process. In addition, the intensity of both SPR peaks was content-related.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Min, C.J. and Veronis, G.: All-optical absorption switches in subwavelength metal-dielectricmetal plasmonic waveguides. In Proceedings of the SPIE, Vol. 7394, 73941Y (2009).Google Scholar
Huang, Y.H., Wu, S.T., and Zhao, Y.Y.: All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics. Opt. Express 12, 895 (2004).CrossRefGoogle ScholarPubMed
Baron, R., Willner, B., and Willner, I.: Biomolecule-nanoparticle hybrids as functional units for nanobiotechnology. Chem. Commun. 4, 323 (2007).CrossRefGoogle Scholar
Kim, K., Kim, L.K., and Seung, J.L.: Surface enrichment of Ag atoms in Au/Ag alloy nanoparticles revealed by surface enhanced Raman scattering spectroscopy. Chem. Phys. Lett. 403, 77 (2005).CrossRefGoogle Scholar
Kreibig, U. and Vollmer, M.: Optical Properties of Metal Clusters (Springer-Verlag, Berlin, Germany, 1995).CrossRefGoogle Scholar
Biswas, A., Eilers, H., Hidden, F. Jr., Aktas, O.C., and Kiran, C.V.S.: Large broadband visible to infrared plasmonic absorption from Ag nanoparticles with a fractal structure embedded in a Teflon AF® matrix. Appl. Phys. Lett. 88, 013103 (2006).CrossRefGoogle Scholar
Liu, X.O., Atwater, M., Wang, J.H., and Huo, Q.: Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloid Surf., B 58, 3 (2007).CrossRefGoogle ScholarPubMed
Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C.: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003).CrossRefGoogle Scholar
Belotelov, V.I., Carotenuto, G., Nicolais, L., Longo, A., Pepe, G.P., Perlo, P., and Zvezdin, A.K.: Online monitoring of alloyed bimetallic nanoparticle formation by optical spectroscopy. J. Appl. Phys. 99, 044304 (2006).CrossRefGoogle Scholar
Suyal, G.: Bimetallic colloids of silver and copper in thin films: Sol–gel synthesis and characterization. Thin Solid Films 426, 53 (2003).CrossRefGoogle Scholar
Hubenthal, F., Zeigler, T., Hendrich, C., Alschinger, M., and Trager, F.: Tuning the surface plasmon resonance by preparation of gold-core/silver-shell and alloy nanoparticles. Eur. Phys. J. D 34, 165 (2005).CrossRefGoogle Scholar
Sangpour, P., Akhavan, O., and Moshfegh, A.Z.: Rf reactive co-sputtered Au–Ag alloy nanoparticles in SiO2 thin films. Appl. Surf. Sci. 253, 7438 (2007).CrossRefGoogle Scholar
Meschel, S.V. and Kleppa, O.J.: Thermochemistry of some binary alloys of samarium with the noble metals (Cu, Ag, Au) by high temperature direct synthesis calorimetry. J. Alloys Compd. 416, 93 (2006).CrossRefGoogle Scholar
Alqudam, S.A., Annapoorni, G.S., and Shivaparasd, M.: Ag–Au alloy nanoparticles prepared by electro-exploding wire technique. J. Nanopart. Res. 10, 1027 (2008).CrossRefGoogle Scholar
Hodak, J.H., Henglein, A., Giersig, M., and Hartland, G.V.: Laser-induced inter-diffusion in AuAg core-shell nanoparticles. J. Phys. Chem. B 104, 11708 (2000).CrossRefGoogle Scholar
Schierhorn, M. and Liz-Marzan, L.M.: Synthesis of bimetallic colloids with tailored intermetallic separation. Nano Lett. 2, 13 (2002).CrossRefGoogle Scholar
Steinbruck, A., Csaki, A., Festag, G., and Fritzsche, W.: Preparation and optical characterization of core–shell bimetal nanoparticles. Plasmonics 1, 79 (2006).CrossRefGoogle Scholar
Yu, K., You, G.J., Polavarapu, L., and Xu, Q.H.: Bimetallic Au/Ag core–shell nanorods studied by ultrafast transient absorption spectroscopy under selective excitation. J. Phys. Chem. C 115, 14000 (2011).CrossRefGoogle Scholar
Wang, Q., Wang, S., Hang, W., and Gong, Q.: Optical resonant absorption and third-order nonlinearity of (Au,Ag)-TiO2 granular composite films. J. Phys. D: Appl. Phys. 38, 389 (2005).CrossRefGoogle Scholar
Wang, J., Song, D.Q., Wang, L.Y., Zhang, H., Zhang, H.Q., and Sun, Y.: Design and performances of immunoassay based on SPR biosensor with Au/Ag alloy nanocomposites. Sens. Actuators, B 157, 547 (2011).CrossRefGoogle Scholar
Reddy, P.R., Varaprasad, K., Reddy, N.N., Raju, K.M., and Reddy, N.S.: Fabrication of Au and Ag Bi-metallic nanocomposite for antimicrobial applications. J. Appl. Polym. Sci. 125, 1357 (2012).CrossRefGoogle Scholar
Sun, X.F., Wei, C.P., and Li, Q.Y.: Preparation and characterization of Au-Ag alloys/SiO2 composite thin films. Acta Phys. Sin-CH ED 58, 5816 (2009) (in Chinese).Google Scholar
Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., Hazle, J.D., Halas, N.J., and West, J.L.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100, 13549 (2003).CrossRefGoogle ScholarPubMed
Chakravadhanula, V.S.K., Elbahri, M., Schurmann, U., Takele, H., Greve, H., Zaporojtchenko, V., and Faupel, F.: Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry. Nanotechnology 19, 225302 (2008).CrossRefGoogle ScholarPubMed
Lee, M., Kim, T.S., and Choi, Y.S.: Third-order optical nonlinearities of sol-gel-processed Au-SiO2 thin films in the surface plasmon absorption region. J. Non-Cryst. Solids 211, 143 (1997).CrossRefGoogle Scholar
Jeon, H.J., Yi, S.C., and Oh, S.G.: Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method. Biomaterials 24, 4921 (2003).CrossRefGoogle ScholarPubMed
Stefanescu, M., Stoia, M., and Stefanescu, O.: Thermal and FT-IR study of the hybrid ethylene-glycol–silica matrix. J. Sol-Gel Sci. Technol. 41, 71 (2007).CrossRefGoogle Scholar
Monsivais-Gámez, E., Ruiz, F., and Martinez, J.R.: Four-membered rings family in the Si–O extended rocking IR band from quantum chemistry calculations. J. Sol-Gel Sci. Technol. 43, 65 (2007).CrossRefGoogle Scholar
De, G., Licciulli, A., Massaro, C., Tapfer, L., Catalano, M., Battagin, G., Meneghini, C., and Mazzoldi, P.: Silver nanocrystals in silica by sol-gel processing. J. Non-Cryst. Solids 194, 225 (1996).CrossRefGoogle Scholar
Allen, L.H. and Matijevic, E.: Stability of colloidal silica: III. Effect of hydrolyzable cations. J. Colloid Interface Sci. 35, 66 (1971).CrossRefGoogle Scholar
Bansal, N.P.: Influence of several metal ions on the gelation activation energy of silicon tetraethoxide. J. Am. Ceram. Soc. 73, 2647 (1990).CrossRefGoogle Scholar
Khan, M.A.M., Kumar, S., Ahamed, M., Alrokayan, S.A., Alsalhi, M.S., Alhoshan, M., and Aldwayyan, A.S.: Structural and spectroscopic studies of thin film of silver nanoparticles. Appl. Surf. Sci. 257, 10607 (2011).CrossRefGoogle Scholar
Li, Y., Zhang, B.P., Zhao, C.H., and Zhao, J.X.: Structure transition, formation, and optical absorption property study of Ag/SiO2 nanofilm by sol-gel method. J. Mater. Res. 27, 3141 (2012).CrossRefGoogle Scholar
Que, W.X., Zhou, Y., Lam, Y.L., Chan, Y.C., Tan, H.T., and Kam, C.H.: Sol-gel processed silica/titania/ÿ-glycidoxypropyltrimethoxysilane composite materials for photonics applications. J. Electron. Mater. 29, 1052 (2000).CrossRefGoogle Scholar
Sun, Y. and Xia, Y.: Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett. 3, 1569 (2003).CrossRefGoogle Scholar
Moulder, J.F., William, F.S., and Peter, E.S.: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, 1992).Google Scholar
Wang, S.J., Zhang, B.P., Yan, L.P., and Deng, W.: Microstructure and optical absorption properties of Au-dispersed CoO thin films. J. Alloys Compd. 509, 5731 (2011).CrossRefGoogle Scholar
Sun, F.Z., Qiao, X.L., Tan, F.T., Wang, W., and Qiu, X.L.: One-step microwave synthesis of Ag/ZnO nanocomposites with enhanced photocatalytic performance. J. Mater. Sci. 47, 7262 (2012).CrossRefGoogle Scholar
Sudipto, P. and Goutam, D.: A new approach for the synthesis of Au-Ag alloy nanoparticle incorporated SiO2 films. Chem. Mater. 17, 6161 (2005).Google Scholar
Mie, G.: Absorption and scattering of light small particles. Ann. Phys. Leipzig 330, 377 (1908).CrossRefGoogle Scholar
Bohren, C. and Huffman, D.: Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).Google Scholar
Du, H.: Mie-scattering calculation. Appl. Opt. 43, 1951 (2004).CrossRefGoogle ScholarPubMed
Garcia, H.: Self-consistent determination of plasmonic resonances in ternary nanocomposites. Phys. Rev. B 75, 045439 (2007).CrossRefGoogle Scholar
Arnold, G.W. and Borders, J.A.: Aggregation and migration of ion-implanted silver in lithia-alumina-silica glass. J. Appl. Phys. 48, 1488 (1977).CrossRefGoogle Scholar
Hosoya, Y., Suga, T., Yanagawa, T., and Kurokawa, Y.: Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina. J. Appl. Phys. 81, 1475 (1997).CrossRefGoogle Scholar
Palik, E.D.: Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).Google Scholar
Sanchez-ramirez, J.F., Pal, U., Nolasco-Hernandez, L., Mendoza-Alvarez, J., and Pescador-Rojas, J.A.: Synthesis and optical properties of Au-Ag alloy nanoclusters with controlled composition. J. Nanomater. 2008, 620412 (2008).CrossRefGoogle Scholar
Sangpour, P., Akhavan, O., and Moshfegh, A.Z.: The effect of Au/Ag ratios on surface composition and optical properties of co-sputtered alloy nanoparticles in Au-Ag:SiO2 thin films. J. Alloys Compd. 486, 22 (2009).CrossRefGoogle Scholar
Kreibig, U. and Frragstein, C.V.: The limitation of electron mean free path in small silver particles. Z. Phys. 224, 307 (1969).CrossRefGoogle Scholar
Martinez-Castanon, G., Martinez, J.R., Zarzosa, G.O., and Ruiz, F.: Optical absorption of Ag particles dispersed in a SiO2 amorphous matrix. J. Sol-Gel Sci. Technol. 36, 137 (2005).CrossRefGoogle Scholar
Lamarre, J.M., Yu, Z., Harkati, C., Roorda, S., and Martinu, L.: Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation. Thin Solid Films 479, 232 (2005).CrossRefGoogle Scholar
Zhao, C.H., Zhang, B.P., and Shang, P.P.: Enhanced nonlinear optical absorption of Au/SiO2 nano-composite thin films. Chin. Phys. B 18, 1674 (2009).Google Scholar
Haruta, M.: Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153 (1997).CrossRefGoogle Scholar
Wang, J., Lau, W.M., and Li, Q.: Effects of particle size and spacing on the optical properties of gold nanocrystals in alumina. J. Appl. Phys. 97, 114303 (2005).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis and optical absorption properties of Au–Ag nanoparticle bimetal dispersed SiO2 composite films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Synthesis and optical absorption properties of Au–Ag nanoparticle bimetal dispersed SiO2 composite films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Synthesis and optical absorption properties of Au–Ag nanoparticle bimetal dispersed SiO2 composite films
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *