Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-hfbn9 Total loading time: 0.251 Render date: 2021-06-12T12:38:23.783Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

A solvothermal decomposition process for fabrication and particle sizes control of Bi2S3 nanowires

Published online by Cambridge University Press:  31 January 2011

Shu-Hong Yu
Affiliation:
Structure Research Laboratory and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Lei Shu
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Jian Yang
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Zhao-Hui Han
Affiliation:
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Yi-Tai Qian
Affiliation:
Structure Research Laboratory and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Yu-Heng Zhang
Affiliation:
Structure Research Laboratory and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Corresponding
E-mail address:
Get access

Abstract

A novel one-step solvothermal decomposition process (SDP) was successfully developed for fabrication of Bi2S3 nanowires via a reaction between BiCl3 and thiourea in polar solvents at 140 °C for 6–12 h. The influence of solvents, reaction temperature, and reaction time on the formation of Bi2S3 nanowires was investigated. The yield was as high as 98%. The particle sizes of Bi2S3 nanowires are controlled by the choice of solvents. The possible formation mechanism of Bi2S3 nanowires via the so-called SDP method is proposed. The present technique is expected to synthesize other nanostructural metal chalcogenides under mild conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Arivuoli, D., Gnanam, F.D., and Ramasamy, P., J. Mater. Sci. Lett. 7, 711 (1988).CrossRefGoogle Scholar
2.Black, J., Conwell, E.M., Seigle, L., and Spencer, C.W., J. Phys. Chem. Solids 2, 240 (1957).CrossRefGoogle Scholar
3.Nomura, R., Kanaya, K., and Matsuda, H., Bull. Chem. Soc. Jpn. 62, 939 (1989).CrossRefGoogle Scholar
4.Farrugia, L.J., Lawlor, F.J., and Norman, N.C., Polyhedron 14, 311 (1995).CrossRefGoogle Scholar
5.Nayak, B.B., Acharya, H.N., Mitra, G.B., and Mathur, B.K., Thin Solid Films 105, 17 (1983).CrossRefGoogle Scholar
6.Pawar, S.H., Bhosale, P.N., Uplane, M.D., and Tanhankar, S., Thin Solid Films 110, 165 (1983).CrossRefGoogle Scholar
7.Boudjouk, P., Remington, M.P. Jr, Grier, D.G., Jarabek, B.R., and McCarthy, G.J., Inorg. Chem. 37, 3538 (1998).CrossRefGoogle Scholar
8.Chen, B., Uher, C., Iordanidis, L., and Kanatzidis, M.G., Chem. Mater. 9, 1655 (1998).CrossRefGoogle Scholar
9.Kaito, Chihiro, Saito, Yoshio, and Fujita, Kazuo, J. Cryst. Growth 94, 967 (1989).CrossRefGoogle Scholar
10.Biswas, S., Mondal, A., Mukherjee, D., and Pramanik, P., J. Electrochem. Soc. 133, 48 (1986).CrossRefGoogle Scholar
11.Pramanik, P. and Bhattachrya, S., J. Mater. Sci. Lett. 6, 1105 (1987).CrossRefGoogle Scholar
12.Lokhande, C.D., Yermune, V.S., and Pawar, S.H., J. Electrochem. Soc. 135, 1852 (1988).CrossRefGoogle Scholar
13.Engelken, R.D., Ali, S., Chang, L.N., Brinkley, C., Turner, K., and Hester, C., Mater. Lett. 10, 264 (1990).CrossRefGoogle Scholar
14.Yesugade, N.S., Lokhande, C.D., and Bhosale, C.H., Thin Solid Films 263, 145 (1995).CrossRefGoogle Scholar
15.Desai, J.D. and Lokhande, C.D., Indian J. Pure Appl. Phys. 31, 152 (1993).Google Scholar
16.Variano, B.F., Hwang, D.M., Sandroff, C.S., Wiltzius, P., Jing, T.W., and Ong, N.P., J. Phys. Chem. 91, 6455 (1987).CrossRefGoogle Scholar
17.Rees, W.S. Jr, and Kräuter, G., J. Mater. Res. 11, 3005 (1996).CrossRefGoogle Scholar
18.Kräuter, G., Neumueller, B., Goedken, V., and Rees, W.S. Jr, Chem. Mater. 8, 360 (1996).CrossRefGoogle Scholar
19.Osakada, K. and Yamamoto, T., Inorg. Chem. 30, 2328 (1991).CrossRefGoogle Scholar
20.Osakada, K. and Yamamoto, T., J. Chem. Soc., Chem. Commun. 1117 (1987).CrossRefGoogle Scholar
21.Shaw, R.A. and Woods, W.K., J. Chem. Soc. A 1569 (1971).CrossRefGoogle Scholar
22.Cui, H., Pike, R.D., Kershaw, R., Dwight, K., and Wold, A., J. Solid State Chem. 101, 115 (1992).CrossRefGoogle Scholar
23.Wold, A. and Dwight, K., J. Solid State Chem. 96, 53 (1992).CrossRefGoogle Scholar
24.Karanjai, M.K. and Dasgupta, D., Mater. Lett. 4, 368 (1986).CrossRefGoogle Scholar
25.Abboudi, M. and Mosset, A., J. Solid State Chem. 109, 70 (1994).CrossRefGoogle Scholar
26.Dutault, F. and Lahaye, J., Bull. Soc. Chim. Fr. 5–6, 236 (1980).Google Scholar
27.Krunks, M., Mellikov, E.Y., and Sork, E., Zh. Neorg. Khim. 30, 1373 (1985).Google Scholar
28.Golovnev, N.N., Egizaryan, M.B., Fedorov, V.A., and Mironov, V.E., Zh. Neorg. Khim. 41, 104 (1996).Google Scholar
29.Karanjai, M.K. and Dasgupta, D., Mater. Lett. 4, 368 (1986).CrossRefGoogle Scholar
30.Karanjai, M.K. and Dasgupta, D., Thin Solid Films 155, 309 (1987).CrossRefGoogle Scholar
31.Krunks, M., Mellikov, E.Y., and Sork, E., Thin Solid Films 145, 105 (1986).CrossRefGoogle Scholar
32.Tohge, N., Asuka, M., and Minami, T., J. Non-Cryst. Solids 147/148, 652 (1992).CrossRefGoogle Scholar
33.Tohge, N., Tamaki, S., and Okuyama, K., Jpn. Appl. Phys. 34, L207 (1995).CrossRefGoogle Scholar
34.Okugama, K., Lenggoro, I.W., Tagami, N., Tamaki, S., and Tohge, N., J. Mater. Sci. 32, 1229 (1997).CrossRefGoogle Scholar
35.Tamaki, S., Tohge, N., and Okugama, K., J. Mater. Sci. Lett. 14, 1388 (1995).CrossRefGoogle Scholar
36.Larionov, S.V., Patrina, L.A., and Uskov, E.M., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 3, 94 (1979).Google Scholar
37.Popov, V.N., Kolodezev, A.B., and Safonov, V.P., Tezisy Dokl. Vses, Soveshch, Tekhnol., Protsessy, Appar. Kach. Prom. Lyuminoforov 98 (1977).Google Scholar
38.Cyganski, A. and Kobylecka, J., Thermochim. Acta 45, 65 (1981).CrossRefGoogle Scholar
39.Morales, A.M. and Liber, C.M., Science 279, 208 (1998).CrossRefGoogle Scholar
40.Han, W.Q., Fan, S.S., Li, Q.Q., and Hu, Y.D., Science 277, 1287 (1997).CrossRefGoogle Scholar
41.Alivisatos, A.P., Science 271, 933 (1996).CrossRefGoogle Scholar
42.Dai, H., Wong, E.W., Lu, Y.Z., Fan, S., and Liber, C.M., Nature 375, 769 (1995).CrossRefGoogle Scholar
43.Saito, S., Science 278, 77 (1997).CrossRefGoogle Scholar
44.Suenaga, K., Colliex, C., Demoncy, N., Loiseau, A., Pascard, H., and Willaime, F., Science 278, 653 (1997).CrossRefGoogle Scholar
45.Braum, P.V., Osenar, P., and Stupp, S.I., Nature 380, 325 (1996).CrossRefGoogle Scholar
46.Trentler, T.J., Hickman, K.M., Goel, S.C., Viano, A.M., Gibbons, P.C., and Buhro, W.E., Science 270, 1791 (1995).CrossRefGoogle Scholar
47.Trentler, T.J., Goel, S.C., Hickman, K.M., Viano, A.M., Chiang, M.Y., Beatty, A.M., Gibbons, P.C., and Buhro, W.E., J. Am. Chem. Soc. 119, 2172 (1997).CrossRefGoogle Scholar
48.Yang, J.P., Meldrum, F.C., and Fendler, J.H., J. Phys. Chem. 99, 5500 (1995).CrossRefGoogle Scholar
49.Klein, J.D., Herrick, R.D., Palmer, D., and Sailor, M.J., Chem. Mater. 5, 902 (1993).CrossRefGoogle Scholar
50.Martin, C.R., Science 266, 1961 (1993).CrossRefGoogle Scholar
51.Routkevitch, D., Bigioni, T., Moskovits, M., and Xu, J.M., J. Phys. Chem. 100, 14037 (1995).CrossRefGoogle Scholar
52.Haslett, T.L., Ryan, L., Bigioni, T., and Douketis, C., Chem. Phys. 210, 343 (1996).Google Scholar
53.Shiang, J.J., Kadavanich, A.V., Grubbs, R.K., and Alivisatos, A.P., J. Phys. Chem. 99, 17417 (1995).CrossRefGoogle Scholar
54.Morris, R.F. and Weigel, S.J., Chem. Soc. Rev. 26, 309 (1997).CrossRefGoogle Scholar
55.Yoshimura, M., J. Mater. Res. 13, 769 (1998).Google Scholar
56.Yoshimura, M. and Suchanek, W., Solid State Ionics 98, 197 (1997).CrossRefGoogle Scholar
57.Yu, S.H., Wu, Y.S., Yang, J., Han, Z.H., Xie, Y., Qian, Y.T., and Liu, X.M., Chem. Mater. 10, 2309 (1998).CrossRefGoogle Scholar
58.Yu, S.H., Yang, J., Han, Z.H., Zhou, Y., Yang, R.Y., Qian, Y.T., and Zhang, Y.H., J. Mater. Chem. 9, 1283 (1999).CrossRefGoogle Scholar
59.Yu, S.H., Yang, J., Han, Z.H., Yang, R.Y., Qian, Y.T., and Zhang, Y.H., J. Solid State Chem. 147 (1999, in press).CrossRefGoogle Scholar
60.Yu, S.H., Yang, J., Wu, Y.S., Han, Z.H., Shu, L., Xie, Y., and Qian, Y.T., Mater. Res. Bull. 33, 1661 (1998).CrossRefGoogle Scholar
61.Yu, S.H., Qian, Y.T., Shu, L., Xie, Y., Yang, L., and Wang, C.S., Mater. Lett. 35, 116 (1998).CrossRefGoogle Scholar
62.Dean, J.A., in Lange's Handbook of Chemistry, 13th ed. (McGraw-Hill, New York, 1985).Google Scholar
63.Sheldrick, W.S. and Wachhold, M., Angew. Chem., Int. Ed. Engl. 36, 206 (1997).CrossRefGoogle Scholar
64.Kitaev, G.E. and Sokolva, T.P., Russ. J. Inorg. Chem. 15, 167 (1970).Google Scholar
65.Ostrovskaya, I.K., Kitaev, G.A., and Velijanov, A.A., Russ. J. Phys. Chem. 50, 956 (1976).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A solvothermal decomposition process for fabrication and particle sizes control of Bi2S3 nanowires
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A solvothermal decomposition process for fabrication and particle sizes control of Bi2S3 nanowires
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A solvothermal decomposition process for fabrication and particle sizes control of Bi2S3 nanowires
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *