Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-5zgkz Total loading time: 0.289 Render date: 2021-09-16T19:48:41.394Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Shape control of highly crystallized titania nanorods based on formation mechanism

Published online by Cambridge University Press:  02 December 2011

Motonari Adachi*
Affiliation:
Department of Chemical Engineering and Materials Science, Doshisha University, Kyotanabe 610-0321, Japan; and Fuji Chemical Co., Ltd., Hirakata 573-0003, Japan
Katsuya Yoshida
Affiliation:
Department of Chemical Engineering and Materials Science, Doshisha University, Kyotanabe 610-0321, Japan
Takehiro Kurata
Affiliation:
Department of Chemical Engineering and Materials Science, Doshisha University, Kyotanabe 610-0321, Japan
Jun Adachi
Affiliation:
National Institute of Biomedical Innovation, Ibaraki 567-0085, Japan
Katsumi Tsuchiya
Affiliation:
Department of Chemical Engineering and Materials Science, Doshisha University, Kyotanabe 610-0321, Japan
Yasushige Mori
Affiliation:
Department of Chemical Engineering and Materials Science, Doshisha University, Kyotanabe 610-0321, Japan
Fumio Uchida
Affiliation:
Fuji Chemical Co., Ltd., Hirakata 573-0003, Japan
*Corresponding
a)Address all correspondence to this author. e-mail: mo-adachi@fuji-chemical.jp
Get access

Abstract

A strategic scheme for controlling the shape of titania nanorods while maintaining their highly crystallized state was investigated in terms of the effects of reactant concentration and temperature change on the formation mechanism. Lowering the temperature from 433 to 413 K markedly slowed down the reaction rate and resulted in the coexistence of amorphous-like films and crystalline titania nanorods due to the concurrence of nucleation out of the amorphous phase and particle growth by crystallization. Based on these findings, a strategy for shape control was proposed and long, high aspect ratio titania nanorods in a highly crystallized state were successfully synthesized.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Centi, G. and Perathoner, S.: The role of nanostructure in improving the performance of electrodes for energy storage and conversion. Eur. J. Inorg. Chem. 2009, 3851 (2009).CrossRefGoogle Scholar
2.Hu, X., Li, G., and Yu, J.C.: Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26, 3031 (2010).CrossRefGoogle ScholarPubMed
3.Manna, L., Scher, E.C., and Alivisatos, A.P.: Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700 (2000).CrossRefGoogle Scholar
4.Empedocles, S.A., Neuhauser, R., Shimizu, K., and Bawendi, M.G.: Photoluminescence from single semiconductor nanostructures. Adv. Mater. 11, 1243 (1999).3.0.CO;2-2>CrossRefGoogle Scholar
5.Nirmal, M. and Brus, L.: Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32, 407 (1999).CrossRefGoogle Scholar
6.Kongkanand, A. and Kamat, P.V.: Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor–SWCNT suspensions. ACS Nano 1, 13 (2007).CrossRefGoogle ScholarPubMed
7.Law, M., Green, L.E., Johnson, J.C., Saykally, R., and Yang, P.: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005).CrossRefGoogle ScholarPubMed
8.Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).CrossRefGoogle Scholar
9.Martinson, A.B.F., Goes, M.S., Febregat-Santiago, F., Bisquert, J., Pellin, M.J., and Hupp, J.T.: Electron transport in dye-sensitized solar cells based on ZnO Nanotubes: Evidence for highly efficient charge collection and exceptionally rapid dynamics. J. Phys. Chem. A 113, 4015 (2009).CrossRefGoogle ScholarPubMed
10.Burda, C., Chen, X., Narayanan, R., and El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005).CrossRefGoogle ScholarPubMed
11.Murray, C.B., Kagan, C.R., and Bawendi, M.G.: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocryatal assemblies. Annu. Rev. Mater. Sci. 30, 545 (2000).CrossRefGoogle Scholar
12.Scher, E.C., Soc, R., Manna, L., and Alivisatos, A.P.: Shape control and applications of nanocrystals. Philos. Trans. R. Soc. London, Ser. A 361, 241 (2003).CrossRefGoogle ScholarPubMed
13.Peng, X.G., Manna, L., Yang, W.D., Wickham, J., Scher, E., Kadavanich, A., and Alivisatos, A.P.: Shape control of CdSe nanocrystals. Nature 404, 59 (2000).CrossRefGoogle ScholarPubMed
14.Song, Q. and Zhang, Z.J.: Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc. 126, 6164 (2004).CrossRefGoogle ScholarPubMed
15.Reiss, B.D., Mao, C., Solis, D.J., Ryan, K.S., Thomson, T., and Belcher, A.M.: Biological routes to metal alloy ferromagnetic nanostructures. Nano Lett. 4, 1127 (2004).CrossRefGoogle Scholar
16.W Yu, W., Wang, Y.A., and Peng, X.: Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals. Chem. Mater. 15, 4300 (2003).CrossRefGoogle Scholar
17.Tang, Z., Ozturk, B., Wang, Y., and Kotov, N.A.: Simple preparation strategy and one-dimensional energy transfer in CdTe nanoparticle chains. J. Phys. Chem. B 108, 6927 (2004).CrossRefGoogle Scholar
18.Tang, Z., Kotov, N.A., and Giersig, M.: Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237 (2002).CrossRefGoogle ScholarPubMed
19.Masuda, H. and Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).CrossRefGoogle ScholarPubMed
20.Masuda, H., Yamada, H., Satoh, M., Asoh, H., Nakao, M., and Tamamura, T.: Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770 (1997).CrossRefGoogle Scholar
21.Shankar, K., Basham, J.I., Allam, N.K., Varghese, O.K., Mor, G.K., Feng, X., Paulose, M., Seabold, J.A., Choi, K.-S., and Grimes, C.A.: Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J. Phys. Chem. C 113, 6327 (2009).CrossRefGoogle Scholar
22.Ghicov, A. and Schmuki, P.: Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 2791 (2009).CrossRefGoogle Scholar
23.Rani, S., Roy, S.C., Paulose, M., Varghese, O.K., Mor, G.K., Kim, S., Yoriya, S., Latempa, T.J., and Grimes, C.A.: Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys. Chem. Chem. Phys. 12, 2780 (2010).CrossRefGoogle ScholarPubMed
24.Lin, C.-J., Yu, C.W.-Y., and Chien, S.-H.: Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J. Mater. Chem. 20, 1073 (2010).CrossRefGoogle Scholar
25.Penn, R.L. and Banfield, J.F.: Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Science 281, 969 (1998).CrossRefGoogle Scholar
26.Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T., and Penn, R.L.: Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751 (2000).CrossRefGoogle ScholarPubMed
27.Fujihara, K., Kumar, A., Jose, R., Ramakrishna, S., and Uchida, S.: Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell. Nanotechnology 18, 365709 (2007).CrossRefGoogle Scholar
28.Lucky, R.A., Medina-Gonzalez, Y., and Charpentier, P.A.: Zr doping on one-dimensional titania nanomaterials synthesized in supercritical carbon dioxide. Langmuir 26, 19014 (2010).CrossRefGoogle ScholarPubMed
29.Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., and Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).CrossRefGoogle ScholarPubMed
30.Yang, H.G., Liu, G., Qiao, S.Z., Sun, C.H., Jin, Y.G., Smith, S.C., Zou, J., Cheng, H.M., and Lu, G.Q.: Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J. Am. Chem. Soc. 131, 4078 (2009).CrossRefGoogle Scholar
31.Garcia, R. and Tello, R.: Size and shape controlled growth of molecular nanostructures on silicon oxide templates. Nano Lett. 4, 1115 (2004).CrossRefGoogle Scholar
32.Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).CrossRefGoogle ScholarPubMed
33.Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44, 6841 (2005).CrossRefGoogle ScholarPubMed
34.Nazeeruddin, M.K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Bessho, T., and Graetzel, M.: Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127, 16835 (2005).CrossRefGoogle ScholarPubMed
35.Sawatsuk, T., Chindaduang, A., Sae-kung, C., Pratontep, S., and Tumcharern, G.: Dye-sensitized solar cells based on TiO2–MWCNTs composite electrodes: Performance improvement and their mechanisms. Diamond Relat. Mater. 18, 524 (2009).CrossRefGoogle Scholar
36.Cai, N., Moon, S.-J., Cevey-Ha, L., Moehl, T., Humphry-Baker, R., Wang, P., Zakeeruddin, S.M., and Graetzel, M.: An organic D-pi-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Lett. 11, 1452 (2011).CrossRefGoogle ScholarPubMed
37.Yum, J.-H., Baranoff, E., Wenger, S., Nazeeruddin, M.K., and Graetzel, M.: Panchromatic engineering for dye-sensitized solar cells. Energy Environ. Sci. 4, 842 (2011).CrossRefGoogle Scholar
38.Bessho, T., Zakeeruddin, S.M., Yeh, C.-Y., Diau, E.W.-G., and Grätzel, M.: Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angew. Chem. Int. Ed. 49, 6646 (2010).CrossRefGoogle ScholarPubMed
39.Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).CrossRefGoogle Scholar
40.Kudo, A. and Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).CrossRefGoogle ScholarPubMed
41.Adachi, M., Murata, Y., Takao, J., Jiu, J., Sakamoto, M., and Wang, F.: Highly efficient dye-sensitized solar cells with titania thin film electrode composed of network structure of single-crystal-like TiO2 nanowires made by “oriented attachment” mechanism. J. Am. Chem. Soc. 126, 14943 (2004).CrossRefGoogle ScholarPubMed
42.Jiu, J., Isoda, S., Wang, F., and Adachi, M.: Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. J. Phys. Chem. B 110, 2087 (2006).CrossRefGoogle ScholarPubMed
43.Kurata, T., Mori, Y., Isoda, S., Jiu, J., Tsuchiya, K., Uchida, F., and Adachi, M.: Characterization and formation process of highly crystallized single crystalline TiO2 nanorods for dye-sensitized solar cells. Curr. Nanosci. 6, 269 (2010).CrossRefGoogle Scholar
44.Adachi, M., Jiu, J., and Isoda, S.: Synthesis of morphology-controlled titania nanocrystals and application for dye-sensitized solar cells. Curr. Nanosci. 3, 285 (2007).CrossRefGoogle Scholar
45.Adachi, M., Jiu, J., Isoda, S., Mori, Y., and Uchida, F.: Self-assembled nanoscale architecture of TiO2 and application for dye-sensitized solar cells. Nanotechnol. Sci. Appl. 1, 1 (2008).CrossRefGoogle ScholarPubMed
46.Yoshida, K., Jiu, J., Nagamatsu, D., Nemoto, T., Kurata, H., Adachi, M., and Isoda, S.: Structure of TiO2 nanorods formed with double surfactants. Mol. Cryst. Liq. Cryst. 491, 14 (2008).CrossRefGoogle Scholar
47.Sugimoto, T., Zhou, X., and Muramatsu, A.: Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method 4. Shape control. J. Colloid Interface Sci. 259, 53 (2003).CrossRefGoogle ScholarPubMed
48.Connor, P.A., Dobson, K.D., and McQuillan, A.J.: New sol-gel attenuated total reflection infrared spectroscopic method for analysis of adsorption at metal oxide surface in aqueous solution. Chelation of TiO2, ZrO2, and Al2O3 surfaces by catechol, 8-quinolinol, and acetylacetone. Langmuir 11, 4193 (1995).CrossRefGoogle Scholar
49.Jiu, J., Wang, F., Sakamoto, M., Takao, J., and Adachi, M.: Preparation of nanocrystaline TiO2 with mixed template and its application for dye-sensitized solar cells. J. Electrochem. Soc. 151, A1653 (2004).CrossRefGoogle Scholar
50.Jiu, J., Isoda, S., Adachi, M., and Wang, F.: Preparation of TiO2 nanocrystalline with 3–5 nm and application for dye-sensitized solar cell. J. Photochem. Photobiol., A 189, 314 (2007).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Shape control of highly crystallized titania nanorods based on formation mechanism
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Shape control of highly crystallized titania nanorods based on formation mechanism
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Shape control of highly crystallized titania nanorods based on formation mechanism
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *