Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-pkshj Total loading time: 0.496 Render date: 2021-11-27T03:43:57.545Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The role of irradiation on deformation-induced martensitic phase transformations in face-centered cubic alloys

Published online by Cambridge University Press:  24 April 2020

Janelle P. Wharry*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47905, USA
Keyou S. Mao
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
*
a)Address all correspondence to this author. e-mail: jwharry@purdue.edu
Get access

Abstract

Localized deformation, including that by the deformation-induced shearing martensitic phase transformation, is responsible for hardening and embrittlement in irradiated face-centered cubic alloys. These localized deformation processes can have profound consequences on the mechanical integrity of common structural metals used in extreme radiation environments such as nuclear reactors. This article aims to review and understand exactly how irradiation affects the martensitic phase transformation in face-centered cubic alloys, with an emphasis on austenitic stainless steel, given its ubiquity in the archival literature. The influence of irradiation on stacking fault energy and subsequent implications on the phase transformation are discussed. Mechanisms by which irradiation-induced microstructures enhance the phase transformation are also described, including the surface energy contribution of irradiation-induced cavities (i.e., voids and bubbles) toward the critical martensite nucleation energy, and partial dislocation–cavity interactions. A deformation mechanism map illustrates how irradiation-induced cavities can modulate the martensitic transformation pathway.

Type
Invited Feature Paper - Review
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

Jiao, Z. and Was, G.S.: The role of irradiated microstructure in the localized deformation of austenitic stainless steels. J. Nucl. Mater. 407, 3443 (2010).CrossRefGoogle Scholar
Byun, T.S., Hashimoto, N., Farrell, K., and Lee, E.H.: Characteristics of microscopic strain localization in irradiated 316 stainless steels and pure vanadium. J. Nucl. Mater. 349, 251264 (2006).10.1016/j.jnucmat.2005.10.011CrossRefGoogle Scholar
McMurtrey, M.D., Was, G.S., Cui, B., Robertson, I., Smith, L., and Farkas, D.: Strain localization at dislocation channel–grain boundary intersections in irradiated stainless steel. Int. J. Plast. 56, 219231 (2014).CrossRefGoogle Scholar
Byun, T.S.: On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels. Acta Mater. 51, 30633071 (2003).10.1016/S1359-6454(03)00117-4CrossRefGoogle Scholar
McMurtrey, M.D., Cui, B., Robertson, I., Farkas, D., and Was, G.S.: Mechanism of dislocation channel-induced irradiation assisted stress corrosion crack initiation in austenitic stainless steel. Curr. Opin. Solid State Mater. Sci. 19, 305314 (2015).10.1016/j.cossms.2015.04.001CrossRefGoogle Scholar
Reichardt, A., Lupinacci, A., Frazer, D., Bailey, N., Vo, H., Howard, C., Jiao, Z., Minor, A.M., Chou, P., and Hosemann, P.: Nanoindentation and in situ microcompression in different dose regimes of proton beam irradiated 304 SS. J. Nucl. Mater. 486, 323331 (2017).CrossRefGoogle Scholar
Lee, E.H., Byun, T.S., Hunn, J.D., Yoo, M.H., Farrell, K., and Mansur, L.K.: On the origin of deformation microstructures in austenitic stainless steel: Part I—microstructures. Acta Mater. 49, 32693276 (2001).CrossRefGoogle Scholar
Gussev, M.N., Field, K.G., and Busby, J.T.: Strain-induced phase transformation at the surface of an AISI-304 stainless steel irradiated to 4.4 dpa and deformed to 0.8% strain. J. Nucl. Mater. 446, 187192 (2014).10.1016/j.jnucmat.2013.11.041CrossRefGoogle Scholar
Mao, K.S., Sun, C., Huang, Y., Shiau, C-H., Garner, F.А., Freyer, P.D., and Wharry, J.P.: Grain orientation dependence of nanoindentation and deformation-induced martensitic phase transformation in neutron irradiated AISI 304L stainless steel. Materialia 5, 100208 (2019).10.1016/j.mtla.2019.100208CrossRefGoogle Scholar
De Bellefon, G.M. and Van Duysen, J.C.: Tailoring plasticity of austenitic stainless steels for nuclear applications: Review of mechanisms controlling plasticity of austenitic steels below 400 °C. J. Nucl. Mater. 475, 168191 (2016).CrossRefGoogle Scholar
Hashimoto, N. and Byun, T.S.: Deformation-induced martensite formation and dislocation channeling in neutron-irradiated 316 stainless steel. J. Nucl. Mater. 367–370, 960965 (2007).CrossRefGoogle Scholar
Byun, T.S., Hashimoto, N., and Farrell, K.: Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Mater. 52, 38893899 (2004).10.1016/j.actamat.2004.05.003CrossRefGoogle Scholar
Cottrell, A.H. and Bilby, B.A.: LX. A mechanism for the growth of deformation twins in crystals. Philos. Mag. 42, 573581 (1951).CrossRefGoogle Scholar
Venables, J.A.: The martensite transformation in stainless steel. Philos. Mag. 7, 3544 (1961).CrossRefGoogle Scholar
Venables, J.A.: Deformation twinning in face-centred cubic metals. Philos. Mag. 6, 379396 (1961).CrossRefGoogle Scholar
Hashimoto, N., Zinkle, S.J., Rowcliffe, A.F., Robertson, J.P., and Jitsukawa, S.: Deformation mechanisms in 316 stainless steel irradiated at 60 °C and 330 °C. J. Nucl. Mater. 283–287, 528534 (2000).CrossRefGoogle Scholar
Chmielus, M., Zhang, X.X., Witherspoon, C., Dunand, D.C., and Müllner, P.: Giant magnetic-field-induced strains in polycrystalline Ni–Mn–Ga foams. Nat. Mater. 8, 863866 (2009).10.1038/nmat2527CrossRefGoogle ScholarPubMed
Han, W.Z., Zhang, J., Ding, M.S., Lv, L., Wang, W.H., Wu, G.H., Shan, Z.W., and Li, J.: Helium nanobubbles enhance superelasticity and retard shear localization in small-volume shape memory alloy. Nano Lett. 17, 37253730 (2017).CrossRefGoogle ScholarPubMed
Levin, V.A., Levitas, V.I., Zingerman, K.M., and Freiman, E.I.: Phase-field simulation of stress-induced martensitic phase transformations at large strains. Int. J. Solid Struct. 50, 29142928 (2013).10.1016/j.ijsolstr.2013.05.003CrossRefGoogle Scholar
Martin, S., Wolf, S., Martin, U., Krüger, L., and Rafaja, D.: Deformation mechanisms in austenitic TRIP/TWIP steel as a function of temperature. Metall. Mater. Trans. A 47, 4958 (2016).CrossRefGoogle Scholar
Pierce, D.T., Jiménez, J.A., Bentley, J., Raabe, D., and Wittig, J.E.: The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation. Acta Mater. 100, 178190 (2015).10.1016/j.actamat.2015.08.030CrossRefGoogle Scholar
Galindo-Nava, E.I. and Rivera-Díaz-del-Castillo, P.E.J.: Understanding martensite and twin formation in austenitic steels: A model describing TRIP and TWIP effects. Acta Mater. 128, 120134 (2017).10.1016/j.actamat.2017.02.004CrossRefGoogle Scholar
Lo, K.H., Shek, C.H., and Lai, J.K.L.: Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 65, 39104 (2009).10.1016/j.mser.2009.03.001CrossRefGoogle Scholar
Wasilewski, R.J.: On the nature of the martensitic transformation. Metall. Trans. A 6, 14051418 (1975).CrossRefGoogle Scholar
Lu, J., Hultman, L., Holmström, E., Antonsson, K.H., Grehk, M., Li, W., Vitos, L., and Golpayegani, A.: Stacking fault energies in austenitic stainless steels. Acta Mater. 111, 3946 (2016).10.1016/j.actamat.2016.03.042CrossRefGoogle Scholar
Stringfellow, R.G., Parks, D.M., and Olson, G.B.: A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels. Acta Metall. Mater. 40, 17031716 (1992).10.1016/0956-7151(92)90114-TCrossRefGoogle Scholar
Olson, G.B. and Cohen, M.: Kinetics of strain-induced martensitic nucleation. Metall. Trans. A 6, 791795 (1975).CrossRefGoogle Scholar
Han, W., Zhan, Q., Yi, X., Ohnuki, S., Liu, Y., Liu, P., Wan, F., and Morrall, D.: Deformation behavior of austenitic stainless steel at deep cryogenic temperatures. J. Nucl. Mater. 504, 2932 (2018).10.1016/j.jnucmat.2018.03.019CrossRefGoogle Scholar
Guzonas, D., Novotny, R., Penttilä, S., Toivonen, A., and Zheng, W.: Radiation effects and mechanical properties. In Materials and Water Chemistry for Supercritical Water-Cooled Reactors (Woodhead Publishing, Duxfor, UK, 2018); pp. 4578.CrossRefGoogle Scholar
Was, G.S.: Fundamentals of Radiation Materials Science: Metals and Alloys, 2nd ed. (Springer, New York, 2017).CrossRefGoogle Scholar
Russell, K.C. and Powell, R.W.: Dislocation loop nucleation in irradiated metals. Acta Metall. 21, 187193 (1973).10.1016/0001-6160(73)90002-3CrossRefGoogle Scholar
Hernández-Mayoral, M. and Caturla, M.J.: Microstructure evolution of irradiated structural materials in nuclear power plants. In Understanding and Mitigating Ageing in Nuclear Power Plants (Ed. Philip G. Tipping, Cambridge, UK Woodhead Publishing, 2010); pp. 189235.10.1533/9781845699956.2.189CrossRefGoogle Scholar
Was, G.S. and Andresen, P.L.: Radiation damage to structural alloys in nuclear power plants: Mechanisms and remediation. In Structural Alloys for Power Plants (Ed. Amir Shirzadi and Susan Jackson, Cambridge, UK, Woodhead Publishing, 2014); pp. 355420.CrossRefGoogle Scholar
Byun, T.S., Hashimoto, N., and Farrell, K.: Deformation mode map of irradiated 316 stainless steel in true stress-dose space. J. Nucl. Mater. 351, 303315 (2006).10.1016/j.jnucmat.2006.02.033CrossRefGoogle Scholar
Cui, Y., Po, G., and Ghoniem, N.: Does irradiation enhance or inhibit strain bursts at the submicron scale? Acta Mater. 132, 285297 (2017).10.1016/j.actamat.2017.04.055CrossRefGoogle Scholar
Robach, J., Robertson, I.M., Wirth, B.D., and Arsenlis, A.: In-situ transmission electron microscopy observations and molecular dynamics simulations of dislocation- defect interactions in ion-irradiated copper. Philos. Mag. 83, 955967 (2003).10.1080/0141861031000065329CrossRefGoogle Scholar
Po, G. and Ghoniem, N.: Continuum modeling of plastic flow localization in irradiated fcc metals. J. Nucl. Mater. 442, S607–S611 (2013).CrossRefGoogle Scholar
West, E.A., McMurtrey, M.D., Jiao, Z., and Was, G.S.: Role of localized deformation in irradiation-assisted stress corrosion cracking initiation. Metall. Mater. Trans. A 43, 136146 (2012).CrossRefGoogle Scholar
Diaz De La Rubia, T., Zblb, H.M., Khralshl, T.A., Wirth, B.D., Victoria, M., and Caturia, M.J.: Multiscale modelling of plastic flow localization in irradiated materials. Nature 406, 871874 (2000).CrossRefGoogle Scholar
Kacher, J., Liu, G.S., and Robertson, I.M.: In situ and tomographic observations of defect free channel formation in ion irradiated stainless steels. Micron 43, 10991107 (2012).10.1016/j.micron.2012.01.017CrossRefGoogle ScholarPubMed
Gussev, M.N., Field, K.G., and Busby, J.T.: Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels. J. Nucl. Mater. 460, 139152 (2015).10.1016/j.jnucmat.2015.02.008CrossRefGoogle Scholar
Azevedo, C.R.F.: A review on neutron-irradiation-induced hardening of metallic components. Eng. Fail. Anal. 18, 19211942 (2011).10.1016/j.engfailanal.2011.06.008CrossRefGoogle Scholar
Was, G.S., Farkas, D., and Robertson, I.M.: Micromechanics of dislocation channeling in intergranular stress corrosion crack nucleation. Curr. Opin. Solid State Mater. Sci. 16, 134142 (2012).CrossRefGoogle Scholar
Byun, T.S. and Hashimoto, N.: Strain localization in irradiated materials. Nucl. Eng. Technol. 38, 619638 (2006).Google Scholar
Byun, T.S., Farrell, K., and Li, M.: Deformation in metals after low-temperature irradiation: Part I—Mapping macroscopic deformation modes on true stress-dose plane. Acta Mater. 56, 10441055 (2008).CrossRefGoogle Scholar
Lee, E.H., Byun, T.S., Hunn, J.D., Yoo, M.H., Farrell, K., and Mansur, L.K.: On the origin of deformation microstructures in austenitic stainless steel: Part II—Mechanisms. Acta Mater. 49, 32773287 (2001).CrossRefGoogle Scholar
Lee, E.H., Byun, T.S., Hunn, J.D., Farrell, K., and Mansur, L.K.: Origin of hardening and deformation mechanisms in irradiated 316 LN austenitic stainless steel. J. Nucl. Mater. 296, 183191 (2001).10.1016/S0022-3115(01)00566-9CrossRefGoogle Scholar
Byun, T.S., Lee, E.H., and Hunn, J.D.: Plastic deformation in 316LN stainless steel—Characterization of deformation microstructures. J. Nucl. Mater. 321, 2939 (2003).10.1016/S0022-3115(03)00195-8CrossRefGoogle Scholar
Byun, T.S. and Farrell, K.: Plastic instability in polycrystalline metals after low temperature irradiation. Acta Mater. 52, 15971608 (2004).10.1016/j.actamat.2003.12.023CrossRefGoogle Scholar
Farrell, K., Byun, T.S., and Hashimoto, N.: Deformation mode maps for tensile deformation of neutron-irradiated structural alloys. J. Nucl. Mater. 335, 471486 (2004).10.1016/j.jnucmat.2004.08.006CrossRefGoogle Scholar
Han, H.N., Lee, C.G., Oh, C-S., Lee, T-H., and Kim, S-J.: A model for deformation behavior and mechanically induced martensitic transformation of metastable austenitic steel. Acta Mater. 52, 52035214 (2004).10.1016/j.actamat.2004.07.031CrossRefGoogle Scholar
Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., and Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 58, 11521211 (2010).CrossRefGoogle Scholar
Yang, X-S., Sun, S., Wu, X-L., Ma, E., and Zhang, T-Y.: Dissecting the mechanism of martensitic transformation via atomic-scale observations. Sci. Rep. 4, 6141 (2015).CrossRefGoogle Scholar
Shen, Y.F., Li, X.X., Sun, X., Wang, Y.D., and Zuo, L.: Twinning and martensite in a 304 austenitic stainless steel. Mater. Sci. Eng., A 552, 514522 (2012).CrossRefGoogle Scholar
Huang, C.X., Yang, G., Gao, Y.L., Wu, S.D., and Li, S.X.: Investigation on the nucleation mechanism of deformation-induced martensite in an austenitic stainless steel under severe plastic deformation. J. Mater. Res. 22, 724729 (2007).10.1557/jmr.2007.0094CrossRefGoogle Scholar
Gusev, M.N., Maksimkin, O.P., and Garner, F.A.: Peculiarities of plastic flow involving “deformation waves” observed during low-temperature tensile tests of highly irradiated 12Cr18Ni10Ti and 08Cr16Ni11Mo3 steels. J. Nucl. Mater. 403, 121125 (2010).CrossRefGoogle Scholar
Field, K.G., Gussev, M.N., and Busby, J.T.: Microstructural characterization of deformation localization at small strains in a neutron-irradiated 304 stainless steel. J. Nucl. Mater. 452, 500508 (2014).CrossRefGoogle Scholar
Ding, M-S., Du, J-P., Wan, L., Ogata, S., Tian, L., Ma, E., Han, W-Z., Li, J., and Shan, Z-W.: Radiation-induced helium nanobubbles enhance ductility in submicron-sized single-crystalline copper. Nano Lett. 16, 41184124 (2016).10.1021/acs.nanolett.6b00864CrossRefGoogle ScholarPubMed
Gussev, M.N., Busby, J.T., and Garner, F.A.: Phase instability and martensitic transformation as a potential degradation mode of nuclear plant internal components. In 17th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors Canadian Nuclear Society, (2015); pp. 110.Google Scholar
Renault-Laborne, A., Hure, J., Malaplate, J., Gavoille, P., Sefta, F., and Tanguy, B.: Tensile properties and deformation microstructure of highly neutron-irradiated 316 stainless steels at low and fast strain rate. J. Nucl. Mater. 508, 488504 (2018).CrossRefGoogle Scholar
Cole, J.I. and Bruemmer, S.M.: Post-irradiation deformation characteristics of heavy-ion irradiated 304L SS. J. Nucl. Mater. 225, 5358 (1995).CrossRefGoogle Scholar
Alontseva, D., Maksimkin, O., Russakova, A., and Suslov, S.: γ → α martensitic transformation in the reactor steels under irradiation and deformation. Mater. Sci. 20, 1520 (2014).Google Scholar
Li, X. and Almazouzi, A.: Deformation and microstructure of neutron irradiated stainless steels with different stacking fault energy. J. Nucl. Mater. 385, 329333 (2009).10.1016/j.jnucmat.2008.12.008CrossRefGoogle Scholar
Curtze, S., Kuokkala, V.T., Oikari, A., Talonen, J., and Hänninen, H.: Thermodynamic modeling of the stacking fault energy of austenitic steels. Acta Mater. 59, 10681076 (2011).CrossRefGoogle Scholar
Doyle, P.J., Benensky, K.M., and Zinkle, S.J.: Modeling of dislocation channel width evolution in irradiated metals. J. Nucl. Mater. 499, 4764 (2018).CrossRefGoogle Scholar
Latanision, R.M. and Ruff, A.W.: The temperature dependence of stacking fault energy in Fe–Cr–Ni alloys. Metall. Trans. 2, 505509 (1971).10.1007/BF02663341CrossRefGoogle Scholar
Hickel, T., Sandlöbes, S., Marceau, R.K.W., Dick, A., Bleskov, I., Neugebauer, J., and Raabe, D.: Impact of nanodiffusion on the stacking fault energy in high-strength steels. Acta Mater. 75, 147155 (2014).10.1016/j.actamat.2014.04.062CrossRefGoogle Scholar
Stoltz, R.E. and Vander Sande, J.B.: The effect of nitrogen on stacking fault energy of Fe–Ni–Cr–Mn steels. Metall. Trans. A 11, 10331037 (1980).CrossRefGoogle Scholar
Yakubtsov, I.A., Ariapour, A., and Perovic, D.D.: Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys. Acta Mater. 47, 12711279 (1999).CrossRefGoogle Scholar
Vitos, L., Nilsson, J.O., and Johansson, B.: Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory. Acta Mater. 54, 38213826 (2006).CrossRefGoogle Scholar
Remy, L.: Temperature variation of the intrinsic stacking fault energy of a high manganese austenitic steel. Acta Metall. 25, 173179 (1977).10.1016/0001-6160(77)90120-1CrossRefGoogle Scholar
Asadi, E., Zaeem, M.A., Moitra, A., and Tschopp, M.A.: Effect of vacancy defects on generalized stacking fault energy of fcc metals. J. Phys. Condens. Matter 26 (2014).CrossRefGoogle ScholarPubMed
Jun, J-H. and Choi, C-S.: Variation of stacking fault energy with austenite grain size and its effect on the MS temperature of γ → ε martensitic transformation in Fe–Mn alloy. Mater. Sci. Eng., A 257, 353356 (1998).CrossRefGoogle Scholar
Choi, J-Y. and Jin, W.: Strain induced martensite formation and its effect on strain hardening behavior in the cold drawn 304 austenitic stainless steels. Scr. Mater. 36, 99104 (1997).CrossRefGoogle Scholar
Wharry, J.P., Yano, K.H., and Patki, P.V.: Intrinsic-extrinsic size effect relationship for micromechanical tests. Scr. Mater. 162, 6367 (2019).10.1016/j.scriptamat.2018.10.045CrossRefGoogle Scholar
Was, G.S., Wharry, J.P., Frisbie, B., Wirth, B.D., Morgan, D., Tucker, J.D., and Allen, T.R.: Assessment of radiation-induced segregation mechanisms in austenitic and ferritic–martensitic alloys. J. Nucl. Mater. 411, 4150 (2011).CrossRefGoogle Scholar
Zhao, S., Osetsky, Y., Stocks, G.M., and Zhang, Y.: Local-environment dependence of stacking fault energies in concentrated solid-solution alloys. npj Comput. Mater. 5, 17 (2019).CrossRefGoogle Scholar
Altmann, S.L., Coulson, C.A., and Hume-Rothery, W.: On the relation between bond hybrids and the metallic structures. Proc. Roy. Soc. Lond. Math. Phys. Sci. 240, 145159 (1957).Google Scholar
Harris, I.R., Dillamore, I.L., Smallman, R.E., and Beeston, B.E.P.: The influence of d-band structure on stacking-fault energy. Philos. Mag. 14, 325333 (1966).CrossRefGoogle Scholar
Mao, K.S., Sun, C., Shiau, C-H., Yano, K.H., Freyer, P.D., El-Azab, A.A., Garner, F.A., French, A., Shao, L., and Wharry, J.P.: Role of cavities on deformation-induced martensitic transformation pathways in a laser-welded, neutron irradiated austenitic stainless steel. Scr. Mater. 178, 16 (2020).10.1016/j.scriptamat.2019.10.037CrossRefGoogle Scholar
Ding, M.S., Tian, L., Han, W.Z., Li, J., Ma, E., and Shan, Z.W.: Nanobubble fragmentation and bubble-free-channel shear localization in helium-irradiated submicron-sized copper. Phys. Rev. Lett. 117, 215501 (2016).CrossRefGoogle ScholarPubMed
Mao, K.S., Sun, C., Liu, X., Qu, H.J., French, A.J., Freyer, P.D., Garner, F.A., Shao, L., and Wharry, J.P.: Effect of laser welding on deformation mechanisms in irradiated austenitic stainless steel. J. Nucl. Mater. 528, 151878 (2020).CrossRefGoogle Scholar
Mao, K., Wang, H., Wu, Y., Tomar, V., and Wharry, J.P.: Microstructure-property relationship for AISI 304/308L stainless steel laser weldment. Mater. Sci. Eng., A 721, 234243 (2018).CrossRefGoogle Scholar
Mao, K.S., Wu, Y., Sun, C., Perez, E., and Wharry, J.P.: Laser weld-induced formation of amorphous Mn–Si precipitate in 304 stainless steel. Materialia 3, 174177 (2018).CrossRefGoogle Scholar
Ortiz, M. and Molinari, A.: Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material. J. Appl. Mech. 59, 48 (1992).CrossRefGoogle Scholar
Osetsky, Y.N. and Bacon, D.J.: Atomic-scale mechanisms of void hardening in bcc and fcc metals. Philos. Mag. 90, 945961 (2010).CrossRefGoogle Scholar
Ahn, T-H., Oh, C-S., Kim, D.H., Oh, K.H., Bei, H., George, E.P., and Han, H.N.: Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation. Scr. Mater. 63, 540543 (2010).CrossRefGoogle Scholar
Bogers, A. and Burgers, W.: Partial dislocations on the {110} planes in the B.C.C. lattice and the transition of the F.C.C. into the B.C.C. lattice. Acta Metall. 12, 255261 (1964).10.1016/0001-6160(64)90194-4CrossRefGoogle Scholar
Olson, G.B. and Cohen, M.: A mechanism for the strain-induced nucleation of martensitic transformations. J. Less Common Met. 28, 107118 (1972).10.1016/0022-5088(72)90173-7CrossRefGoogle Scholar
Christian, J. and Christian, J.W.: Twinning and martensitic transformation. J. Phys. Collo-Ques. 35, C7 (1974).Google Scholar
Han, W.Z., Ding, M.S., Narayan, R.L., and Shan, Z-W.: In situ study of deformation twinning and detwinning in helium irradiated small-volume copper. Adv. Eng. Mater. 19, 1700357 (2017).CrossRefGoogle Scholar
Doihara, K., Okita, T., Itakura, M., Aichi, M., and Suzuki, K.: Atomic simulations to evaluate effects of stacking fault energy on interactions between edge dislocation and spherical void in face-centred cubic metals. Philos. Mag. 98, 20612076 (2018).CrossRefGoogle Scholar
Edwards, D.J., Simonen, E.P., and Bruemmer, S.M.: Evolution of fine-scale defects in stainless steels neutron-irradiated at 275 °C. J. Nucl. Mater. 317, 1331 (2003).CrossRefGoogle Scholar
Meyers, M.A. and Chawla, K.K.: Mechanical Behavior of Materials, 2nd ed. (Cambridge University Press, Cambridge, UK, 2008).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The role of irradiation on deformation-induced martensitic phase transformations in face-centered cubic alloys
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The role of irradiation on deformation-induced martensitic phase transformations in face-centered cubic alloys
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The role of irradiation on deformation-induced martensitic phase transformations in face-centered cubic alloys
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *