Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T13:28:57.387Z Has data issue: false hasContentIssue false

The preparation and characterization of ultrafine Fe–Ni particles

Published online by Cambridge University Press:  31 January 2011

X.L. Dong
Affiliation:
Institute of Metal Research, Academia Sinica, 110015, Shenyang, People's Republic of China
Z.D. Zhang
Affiliation:
Institute of Metal Research, Academia Sinica, 110015, Shenyang, People's Republic of China
X.G. Zhao
Affiliation:
Institute of Metal Research, Academia Sinica, 110015, Shenyang, People's Republic of China
Y.C. Chuang
Affiliation:
Institute of Metal Research, Academia Sinica, 110015, Shenyang, People's Republic of China
S.R. Jin
Affiliation:
Laboratory of Ultrafine Particles, Shenyang Polytechnic University, 110023, Shenyang, People's Republic of China
W.M. Sun
Affiliation:
Laboratory of Ultrafine Particles, Shenyang Polytechnic University, 110023, Shenyang, People's Republic of China
Get access

Abstract

Ultrafine Fe, Fe–Ni, and Ni particles were prepared by using the hydrogen plasma-metal reaction method in a mixture of H2 and Ar of 0.1 MPa. The particles were characterized by x-ray diffraction, transmission electron spectroscopy, energy disperse spectroscopy, chemical analysis, and Mössbauer spectroscopy. In contrast with bulk Fe–Ni alloys, the distinguishing features in corresponding ultrafine particles are that two phases with fcc and bcc structures coexist in a wide composition range. Ultrafine Fe–Ni particles have higher resistance to oxidation than Fe and Ni particles. The mechanism of forming particles was analyzed by means of structural and magnetic measurements. It was found that quenching is a dominant mechanism for forming paramagnetic particles. Hyperfine interactions were studied by Mössbauer spectroscopy in comparison with those in bulk Fe–Ni alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Siegel, R. W., Mater. Sci. Eng. A168, 189 (1993).CrossRefGoogle Scholar
2.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
3.Uyeda, R., Prog. Mater. Sci. 35, 25 (1991).CrossRefGoogle Scholar
4.Beck, D.D. and Siegel, R. W., J. Mater. Sci. 7, 2840 (1992).Google Scholar
5.Rossetti, R., Ellison, J. L., Gibson, J. M., and Brus, L. E., J. Chem. Phys. 80, 4464 (1984).CrossRefGoogle Scholar
6.Christman, T. and Jain, M., Scripta Metall. et Mater. 25, 767 (1991).CrossRefGoogle Scholar
7.Gurav, A., Kodas, T., Pluym, T., and Xiong, Y., Aerosol Sci. Technol. 19, 411 (1993).CrossRefGoogle Scholar
8.Granqvist, C.G. and Burhman, R.A., J. Appl. Phys. 47, 2200 (1976).CrossRefGoogle Scholar
9.Hahn, H. and Averback, R. S., J. Appl. Phys. 67, 1113 (1990).CrossRefGoogle Scholar
10.Akhtar, M.K., Pratsinis, S. E., and Mastrangelo, S. V.R, J. Am. Ceram. Soc. 75, 3408 (1992).CrossRefGoogle Scholar
11.Girshick, S.L., Chiu, C-P., Muno, R., Wu, C.Y., Yang, L., Singh, S.K., and McMurry, P. H., J. Aerosol Sci. 24, 367 (1993).CrossRefGoogle Scholar
12.Young, R.M. and Pfender, E., Plasma Chem. Plasma Process. 5, 1 (1985).CrossRefGoogle Scholar
13.Flint, J. H., Marra, R. A., and Haggerty, J. S., Aerosol Sci. Technol. 5, 249 (1986).CrossRefGoogle Scholar
14.Bi, X.X., Ganguly, B., Huffman, G. P., Huggins, F.E., Endo, M., and Eklund, P. C., J. Mater. Res. 8, 1666 (1993).CrossRefGoogle Scholar
15.Wada, N., Jpn. J. Appl. Phys. 8, 551 (1969).CrossRefGoogle Scholar
16.Oya, H., Ichihashi, T., and Wada, N., Jpn. J. Appl. Phys. 21, 554 (1982).CrossRefGoogle Scholar
17.Hayashi, C., Uyeda, R., and Tasaki, A., Chobiryushi (Ultrafine Particles), Mita, 1988 (in Japanese).Google Scholar
18.Uda, M., Bull. Metal. Soc. Jpn. 22, 412 (1983) (in Japanese).CrossRefGoogle Scholar
19.Ohno, S. and Uda, M., J. Jpn. Inst. Metals 48, 640 (1984).CrossRefGoogle Scholar
20.Uda, M., Surface 24, 295 (1986).Google Scholar
21. Practice technique of ultrafine particles, CMC, 1985 (in Japanese).Google Scholar
22.Zhou, Y.H., Harmelin, M., and Bigot, J., Mater. Sci. Eng. A124, 241 (1990).CrossRefGoogle Scholar
23.Chen, Y.H., Deng, G.C., Lu, H.X., Wang, J.H., and Li, G., Jpn. J. Appl. Phys. 35, 113 (1995).Google Scholar
24.Kajiwara, S., Ohno, S., and Honma, K., Philos. Mag. A63, 625 (1991).CrossRefGoogle Scholar
25.Cheung, C., Djuanda, F., Erb, U., and Palumbo, G., NanoStructurals Mater. 5, 513 (1995).CrossRefGoogle Scholar
26.Hays, V., Marchand, R., Saindrenan, G., and Gaffet, E., NanoStructurals Mater. 7, 411 (1996).CrossRefGoogle Scholar
27.Kusaka, K., Wada, N., and Tasaki, A., Jpn. J. Appl. Phys. 8, 599 (1969).CrossRefGoogle Scholar
28.Tasaki, A., Takao, M., and Tokunaga, H., Jpn. J. Appl. Phys. 13, 271 (1974).CrossRefGoogle Scholar
29.Jin, S.R., Sun, W.M., Zhen, Z. X., and Yang, H., 96 China-Japan Symposium on Particuology, Beijin, China, p. 201.Google Scholar
30.Brunauer, S., Emmett, P.H., and Teller, E., J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
31.Gangopadhyay, S., Hadjipanayis, G. C., Dale, B., Sorensen, C.M., Klabunde, K.J., Papaefthymiou, V., and Kostikas, A., Phys. Rev. B 45, 9778 (1992).CrossRefGoogle Scholar
32.Berkowitz, A.E., Schuele, W. J., and Flanders, P. J., J. Appl. Phys. 39, 1261 (1968).CrossRefGoogle Scholar
33.Luborsky, F.E., J. Appl. Phys. 29, 309 (1958).CrossRefGoogle Scholar
34.Morrish, A.H., Haneda, K., and Schurer, P.J., J. Phys. (Paris) Colloq. 37, C6301 (1976).CrossRefGoogle Scholar
35.Coey, J. M. D. and Khalafella, D., Phys. Status Solidi A11, 229 (1976).Google Scholar
36.Haneda, K. and Morrish, A.H., IEEE Trans. Magn. 25, 2597 (1989).CrossRefGoogle Scholar
37.Zhao, X.Q., Ph.D. Thesis, Institute of Metal Research, Academia Sinica (1995).Google Scholar
38.Jin, S.R., Sun, W.M., Zheng, Z.X., Yang, H., Dong, X.L., Zhang, Z.D., and Zhao, X. G., Proc. 1st Int. Conference on High-New Technology and Traditional Industry, July 28–31, 1996, Dandong, China, pp. 710715.Google Scholar
39.Johnson, C.E., Ridout, M. S., and Cranshaw, T. E., Proc. Phys. Soc. 81, 1079 (1963).CrossRefGoogle Scholar
40.Hansen, M., Constitution of Binary Alloys (McGraw-Hill, New York, 1958), p. 680.Google Scholar
41.de Benedetti, S., Lang, G., and Ingalls, R., Phys. Rev. Lett. 6, 60 (1961).CrossRefGoogle Scholar
42.Walker, L.R., Wertheim, G. K., and Jaccarino, V., Phys. Rev. Lett. 6, 98 (1961).CrossRefGoogle Scholar
43.Uyeda, R., Crystallography of Metal Smoke Particles (Terra Scientific Publishing Company, Tokyo, 1987), p. 109 (in Chinese).Google Scholar
44.Dietrich, D.W., Metals Handbook, 10th ed. (ASM INTERNATIONAL, Materials Park, OH, 1990), Vol. 2, p. 770.Google Scholar