Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-w5vlw Total loading time: 0.249 Render date: 2022-01-23T02:16:22.640Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Plasma-assisted metalorganic chemical vapor deposition growth of ZnO thin films

Published online by Cambridge University Press:  01 July 2006

Maria Losurdo*
Affiliation:
Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, and INSTM, UdR Bari, 70126 Bari, Italy
Maria M. Giangregorio
Affiliation:
Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, and INSTM, UdR Bari, 70126 Bari, Italy
A. Sacchetti
Affiliation:
Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, and INSTM, UdR Bari, 70126 Bari, Italy
Pio Capezzuto
Affiliation:
Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, and INSTM, UdR Bari, 70126 Bari, Italy
Giovanni Bruno
Affiliation:
Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, and INSTM, UdR Bari, 70126 Bari, Italy
Graziella Malandrino
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, and INSTM, UdR Catania, I-95125 Catania, Italy
Ignazio L. Fragalà
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, and INSTM, UdR Catania, I-95125 Catania, Italy
*
a) Address all correspondence to this author.e-mail: maria.losurdo@ba.imip.cnr.it This paper was selected as the Outstanding Meeting Paper for the 2005 MRS Fall Meeting Symposium FF Proceedings, Vol. 892.
Get access

Abstract

ZnO thin films have been grown by metalorganic chemical vapor deposition (MOCVD) and plasma-assisted (PA) MOCVD on c-axis-oriented sapphire (0001) and Si (001) substrates using the novel Zn(2-thenoyltrifluoroacetonate)2·N,N,N′,N′-tetramethylethylendiamine precursor. The structural, morphological, and optical properties of ZnO films have been investigated. The results show that the O2 PA growth results in highly c-axis-oriented hexagonal ZnO thin films also on cubic substrates. PA-MOCVD ZnO films have good optical properties, as inferred by the presence of a sharp and intense exciton in the dielectric function.

Type
Outstanding Meeting Papers
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T.: Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 50, 293 (2005).CrossRefGoogle Scholar
2.Robbins, J.J., Harvey, J., Leaf, J., Fry, C., Wolden, C.A.: Transport phenomena in high performance nanocrystalline ZnO:Ga films deposited by plasma enhanced chemical vapor deposition. Thin Solid Films 473, 35 (2005).CrossRefGoogle Scholar
3.CRC Handbook of Chemistry and Physics 57th ed; edited by Weast, R.C. (CRC Press, Cleveland, OH, 19761977), p. F-224.Google Scholar
4.Malandrino, G., Blandino, M., Perdicaro, L.M.S., Fragalà, I.L., Rossi, P., Dapporto, P.: A novel diamine adduct of zinc bis(2-thenoyl-trifluoroacetonate) as a promising precursor for MOCVD of zinc oxide films. Inorg. Chem. 44, 9684 (2005).CrossRefGoogle ScholarPubMed
5.Hitchman, M.L., Shamlian, S.H., Gilliland, D.C., Cole-Hamilton, D., Nash, J.A.P., Thompson, S.C., Cook, S.L.: Reproducible MOCVD of barium fluoride: Studies of the effect of the degree of precursor crystallinity and purity. J. Mater. Chem. 5, 47 (1995).CrossRefGoogle Scholar
6.Cho, M.W., Setiawan, A., Ko, H.J., Hong, S.K., Yao, T.: ZnO epitaxial layers grown on c-sapphire substrate via MgO buffer by plasma assisted molecular beam epitaxy. Semicond. Sci. Technol. 20, S13 (2005).CrossRefGoogle Scholar
7.Bruggemann, D.A.G.: Effective medium approximation. Ann. Phys. (Leipzig) 24, 636 (1965).Google Scholar
8.Adachi, S.: Optical Constants of Crystalline and Amorphous Semiconductors (Kluwer Academic Publishers, Boston, MA, 1999), pp. 420424.CrossRefGoogle Scholar
9.Dadgar, A., Poschenrieder, M., Reiher, A., Blasing, J., Christen, J., Krtschill, A., Finger, T., Hempel, T., Diez, A., Krost, A.: Reduction of stress at the initial stages of GaN growth on Si(111). Appl. Phys. Lett. 82, 28 (2003).CrossRefGoogle Scholar
10.Ploog, K.H., Brandt, O., Yang, H., Yang, B., Trampert, A.: Nucleation and growth of GaN layers on GaAs, Si and SiC substrates. J. Vac. Sci. Technol. B 16, 2229 (1998).CrossRefGoogle Scholar
11.Nam, O.H., Bremser, M.D., Zheleva, T.S., Davis, R.F.: Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy. Appl. Phys. Lett. 71, 2638 (1997).CrossRefGoogle Scholar
12.Matsuda, A.: Growth mechanism of microcrystalline silicon obtained from reactive plasmas. Thin Solid Films 337, 1 (1999).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Plasma-assisted metalorganic chemical vapor deposition growth of ZnO thin films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Plasma-assisted metalorganic chemical vapor deposition growth of ZnO thin films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Plasma-assisted metalorganic chemical vapor deposition growth of ZnO thin films
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *