Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-13T16:24:42.097Z Has data issue: false hasContentIssue false

Phase transition and electrical properties of (1 − x)(K1/2Na1/2)NbO3xBi(Sc3/4Co1/4)O3 lead-free ceramics

Published online by Cambridge University Press:  13 August 2015

Hualei Cheng*
Affiliation:
Shaanxi Key Laboratory of Phytochemistry, Department of Chemistry, Baoji University of Arts and Science, Baoji, Shaanxi 721013, China; and State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
Hongliang Du
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; and College of Science, Air Force Engineering University, Xi'an, Shaanxi 710051, China
Wancheng Zhou
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
Fa Luo
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
*
a)Address all correspondence to this author. e-mail: hualeicheng@163.com.
Get access

Abstract

Lead-free ceramics (1 − x)(K1/2Na1/2)NbO3xBi(Sc3/4Co1/4)O3 [(1 − x)KNN–xBSC] were prepared by the conventional solid-state sintering method. X-ray diffraction patterns show that the introduction of BSC into KNN system caused insignificant change in crystal structure. The composition with x = 0.015 has diphasic tetragonal and orthorhombic phases. Moreover, the grain size significantly dependent on the composition. The phase transition temperatures of orthorhombic–tetragonal (TO–T) and tetragonal–cubic (TC) decreased with increasing x from 0 to 0.025. The TO–T value of KNN–0.015BSC ceramic is close to room temperature, resulting in good electrical properties (d33 = 190 pC/N, kp = 40.3%, εr = 1494, tgδ = 0.026), with the Curie temperature TC = 321 °C. The combination of good piezoelectric properties and high TC makes these KNN–BSC ceramics suitable for elevated temperature piezoelectric devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Turner, R.C., Fuierer, P.A., Newnham, R.E., and Shrout, T.R.: Materials for high temperature acoustic and vibration sensors: A review. Appl. Acoust. 41, 299 (1994).CrossRefGoogle Scholar
Chen, S., Dong, X.L., and Mao, C.L.: Thermal stability of (1-x)BiScO3-xPbTiO3 piezoelectric ceramics for high-temperature sensor applications. J. Am. Ceram. Soc. 89, 3270 (2006).CrossRefGoogle Scholar
Zhang, S.J. and Yu, F.P.: Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94, 3153 (2011).CrossRefGoogle Scholar
Eitel, R.E., Randall, C.A., Shrout, T.R., Rehrig, P.W., Hackenberger, W., and Park, S.E.: New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3-PbTiO3. Jpn. J. Appl. Phys. 40, 5999 (2001).CrossRefGoogle Scholar
Eitel, R.E., Randall, C.A., and Shrout, T.R.: Preparation and characterization of high temperature perovskite ferroelectrics in the solid solution (1-x)BiScO3-(x)PbTiO3. Jap. J. Appl. Phys. 41, 2099 (2002).CrossRefGoogle Scholar
Zhang, S.J., Stringer, C.J., Xia, R., Choi, S.M., Randall, C.A., and Shrout, T.R.: Investigation of bismuth-based perovskite system: (1-x)Bi(Ni2/3Nb1/3)O3-xPbTiO3. J. Appl. Phys. 98, 034103 (2005).CrossRefGoogle Scholar
Zhang, S.J., Xia, R., Randall, C.A., Shrout, T.R., Duan, R.R., and Speyer, R.F.: Dielectric and piezoelectric properties of niobium-modified BiInO3-PbTiO3 perovskite ceramics with high curie temperatures. J. Mat. Res. 20, 2067 (2005).CrossRefGoogle Scholar
Choi, S.M., Stringer, C.J., Shrout, T.R., and Randall, C.A.: Structure and property investigation of a Bi-based perovskite solid solution: (1-x)Bi(Ni1/2Ti1/2)O3-(x)PbTiO3. J. Appl. Phys. 98, 34108 (2005).CrossRefGoogle Scholar
Jiang, M.H., Liu, X.Y., and Liu, C.Y.: Effect of BiFeO3 additions on the dielectric and piezoelectric properties of (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 ceramics. Mater. Res. Bull. 45, 220 (2010).CrossRefGoogle Scholar
Zuo, R.Z., Lv, D.Y., and Fu, J.: Phase transition and electrical properties of lead free (Na0.5K0.5)NbO3-BiAlO3 ceramics. J. Alloy Compd. 476, 836 (2009).CrossRefGoogle Scholar
Jiang, M.H., Liu, X.Y., and Chen, G.H.: Dielectric and piezoelectric properties of BiMnO3 doped 0.95Na0.5K0.5NbO3-0.05LiSbO3 ceramics. J. Mater. Sci: Mater. Electron. 22, 876 (2011).Google Scholar
Zhao, J.B., Du, H.L., and Qu, S.B.: The effects of Bi(Mg2/3Nb1/3)O3 on piezoelectric and ferroelectric properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J. Alloys Comp. 509, 3537 (2011).CrossRefGoogle Scholar
Cheng, H.L., Du, H.L., and Zhou, W.C.: Bi(Zn2/3Nb1/3)O3-(K0.5Na0.5)NbO3 high-temperature lead-free ferroelectric ceramics with low capacitance variation in a broad temperature usage range. J. Am. Ceram. Soc. 96, 833 (2013).CrossRefGoogle Scholar
Sun, X.Y., Chen, J., and Yu, R.B.: BiScO3 doped (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 92, 130 (2009).CrossRefGoogle Scholar
Du, H.L., Zhou, W.C., and Luo, F.: Design and electrical properties’ investigation of (K0.5Na0.5)NbO3-BiMeO3 lead-free piezoelectric ceramics. J. Appl. Phys. 104, 034104 (2008).CrossRefGoogle Scholar
Du, H.L., Zhou, W.C., and Luo, F.: High Tm lead-free relaxor ferroelectrics with broad temperature usage range: 0.04BiScO3-0.96(K0.5Na0.5)NbO3. J. Appl. Phys. 104, 044104 (2008).CrossRefGoogle Scholar
Wu, W.J., Xiao, D.Q., and Wu, J.G.: Polymorphic phase transition-induced electrical behavior of BiCoO3-modified (K0.48Na0.52)NbO3 lead-free piezoelectric ceramics. J. Alloy Compd. 509, L284 (2011).CrossRefGoogle Scholar
Wu, W.J., Xiao, D.Q., and Wu, J.G.: Potassium sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries. Chem. Rev. 115, 2559 (2015).CrossRefGoogle ScholarPubMed
Zhang, B.Y., Wu, J.G., and Cheng, X.J.: Lead-free piezoelectrics based on potassium-sodium niobate with giant d 33. ACS Appl. Mater. Interfaces 5, 7718 (2013).CrossRefGoogle Scholar
Wang, X.P., Wu, J.G., and Xiao, D.Q.: Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136, 2905 (2014).CrossRefGoogle ScholarPubMed
Wang, X.P., Wu, J.G., and Xiao, D.Q.: Large d 33 in (K,Na)(Nb,Ta,Sb)O3-(Bi,Na,K)ZrO3 lead-free ceramics. J. Mater. Chem. A 2, 4122 (2014).CrossRefGoogle Scholar
Liang, W.F., Wu, W.J., and Xiao, D.Q.: Construction of new morphotropic phase boundary in 0.94(K0.42-xNa0.6BaxNb1-xZrx)O3-0.06LiSbO3 lead-free piezoelectric ceramics. J. Mater. Sci. 46, 6871 (2011).CrossRefGoogle Scholar
Wang, R.P., Bando, H., and Katsumata, T.: Tuning the orthorhombic-rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate. Phys. Status Solidi RRL 3, 142 (2009).CrossRefGoogle Scholar
Zuo, R.Z., Fu, J., Lv, D.Y., and Liu, Y.: Antimony tuned rhombohdral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. J. Am. Ceram. Soc. 93, 2783 (2010).CrossRefGoogle Scholar
Wang, X.P., Wu, J.G., and Xiao, D.Q.: New potassium-sodium niobate ceramics with a giant d 33. ACS Appl. Mater. Interfaces 6, 6177 (2014).CrossRefGoogle ScholarPubMed
Wang, Z., Xiao, D.Q., and Wu, G.J.: New lead-free (1-x)(K0.5Na0.5)NbO3-x(Bi0.5Na0.5)ZrO3 ceramics with high piezoelectricity. J. Am. Ceram. Soc. 97, 688 (2014).CrossRefGoogle Scholar
Zang, G.Z., Yi, X.J., Du, J., and Wang, Y.F.: Co2O3 doped (Na0.65K0.35)NbO3 piezoceramics. Mater. Lett. 64, 1394 (2010).CrossRefGoogle Scholar
Wu, W.J., Xiao, D.Q., and Wu, J.G.: Piezoelectric properties of (K0.474Na0.474Li0.052)(Nb0.948Sb0.052)O3-Co2O3 lead-free ceramics. J. Ceram. Soc. Jpn. 119, 654 (2011).CrossRefGoogle Scholar
Du, H.L., Zhou, W.C., and Luo, F.: Phase structure, dielectric properties, and relaxor behavior of (K0.5Na0.5)NbO3-(Ba0.5Sr0.5)TiO3 lead-free solid solution for high temperature applications. J. Appl. Phys. 105, 124104 (2009).CrossRefGoogle Scholar
Maxwell, J.C.: Electricity and Magnetism (Oxford University Press, London, 1973).Google Scholar
Wagner, K.W.: Delectric relaxation in distributed dielectric layers. Ann. Phys. 40, 817 (1913).CrossRefGoogle Scholar
Marcos, F.R., Romero, J.J., and Navarro, M.G.: Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. J. Eur. Ceram. Soc. 29, 3045 (2009).CrossRefGoogle Scholar