Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-mm7gn Total loading time: 0.374 Render date: 2022-08-19T11:22:54.227Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Nickel oxide–silica and nickel–silica aerogel and xerogel nanocomposite materials

Published online by Cambridge University Press:  31 January 2011

M. F. Casula
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Complesso Universitario di Monserrato, S.S. 554 bivio per Sestu, 09042 Monserrato, Cagliari, Italy
A. Corrias
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Complesso Universitario di Monserrato, S.S. 554 bivio per Sestu, 09042 Monserrato, Cagliari, Italy
G. Paschina
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Complesso Universitario di Monserrato, S.S. 554 bivio per Sestu, 09042 Monserrato, Cagliari, Italy
Get access

Abstract

The sol-gel method was used to prepare nickel oxide–silica and nickel–silica nanocomposite materials and the corresponding silica matrices. Different drying conditions were used to obtain aerogel and xerogel materials. The samples were characterized by thermal analysis, x-ray diffraction, N2–physisorption, transmission electron microscopy techniques, and infrared spectroscopy. Aerogel samples had a much higher surface area than the xerogel samples; moreover, different supercritical drying conditions gave rise to a different porous structure, which influenced the size and distribution of the nanoparticles in the matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Birringer, R., Mater. Sci. Eng. A 117, 33 (1989).CrossRefGoogle Scholar
2. Gleiter, H., J. Appl. Crystallogr. 24, 79 (1991).CrossRefGoogle Scholar
3. Siegel, R.W., J. Phys. Chem. Solids 55, 1097 (1994).CrossRefGoogle Scholar
4. Komarneni, S., J. Mater. Chem. 2, 1219 (1992).CrossRefGoogle Scholar
5. Newnham, R.E., McKinstry, S.E., and Ikaua, H., in Multifunctional Ferroic Nanocomposites, edited by Buckley, A., Gallagher-Daggitt, G., Karasz, F.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 175, Pittsburgh, PA, 1990), pp. 161172.Google Scholar
6. Brinker, C.J. and Scherer, G.W.. Sol-gel Science (Academic Press, San Diego, CA, 1990).Google Scholar
7. Sol-Gel technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes, edited by C.L. Klein (Noyes Publication, Park Ridge, NJ, 1988).Google Scholar
8. Corrias, A., Mountjoy, G., Piccaluga, G., and Solinas, S., J. Phys. Chem. B 103, 10081 (1999).CrossRefGoogle Scholar
9. Corrias, A., Enans, G., Mountjoy, G., and Paschina, G., Phys. Chem. Chem. Phys. 5, 1045 (2000).CrossRefGoogle Scholar
10. Bruni, S., Cariati, F., Casu, M., Lai, A., Musinu, A., and Piccaluga, G., Nanostruct. Mater. 11, 573 (1999).CrossRefGoogle Scholar
11. Falconieri, M., Salvetti, G., Cattaruzza, E., Gonella, F., Mattei, G., Mazzoldi, P., Piovesan, M., and Battaglin, G., Appl. Phys. Lett. 73, 288 (1998).CrossRefGoogle Scholar
12. Ueno, A., Suzuki, H., and Kotera, Y., J. Chem. Soc., Faraday Trans. I 79, 127 (1983).Google Scholar
13. Basumallick, A., Biswas, K., Das, G.C., and Mukherjee, S., J. Mater. Res. 10, 2938 (1995).CrossRefGoogle Scholar
14. Keane, M., Langmuir 13, 41 (1997).CrossRefGoogle Scholar
15. Roy, S., Chakravorty, D., and Agravol, D.L., J. Appl. Phys. 74, 4746 (1993).CrossRefGoogle Scholar
16. Pajonk, G.M. and Teichner, S.J., in Aerogels, edited by Fricke, J. (Springer Proceedings in Physics, Berlin, Germany, 1986).Google Scholar
17. Ennas, G., Marongiu, G., Paschina, G., Piccaluga, G., and Solinas, S., Euromat 1999 Proceedings (2000, in press).Google Scholar
18. Brunauer, S., Emmet, P.H., and Teller, E., J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
19. Lippens, B.C. and De Boer, J.H., J. Catal. 4, 319 (1965).CrossRefGoogle Scholar
20. Lecloux, A. and Pirard, J.P., J. Colloid Interface Sci. 70, 265 (1979).CrossRefGoogle Scholar
21. Dubinin, M.M., Q. Rev. Chem. Soc. 9, 101 (1955).CrossRefGoogle Scholar
22. Horwarth, G. and Kawazoe, K., J. Chem. Eng. Jpn. 16, 470 (1983).Google Scholar
23. Brunauer, S., Deming, L.S., Deming, W.S., and Teller, E., J. Am. Chem. Soc. 62, 1723 (1940).CrossRefGoogle Scholar
24. Sing, K.S.W, Everett, D.H., Haul, R.A.W, Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
25. Barret, E.P., Joyner, L.G., and Halenda, P.P., J. Am. Chem. Soc. 73, 373 (1951).CrossRefGoogle Scholar
26.PDF-2 File, JCPDS International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA, 1998.Google Scholar
27. Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedures (Wiley, New York, 1974).Google Scholar
28. Nakamoto, K., Infrared Spectroscopy of Inorganic and Co-ordination Compounds (Wiley, New York, 1970).Google Scholar
29. Weigel, D., Imelik, B., and Lafitte, P., Bull. Soc. Chim. Fr. 345 (1962).Google Scholar
30. Clause, O., Kermarec, M., Bonneviot, L., Villain, F., and Che, M., J. Am. Chem. Soc. 114, 4709 (1992).CrossRefGoogle Scholar
31. Prassas, M., Phalippou, J., and Zarzycki, J., J. Mater. Sci. 19, 1656 (1984).CrossRefGoogle Scholar
32. Boonstra, A.H. and Baken, J.M.E, J. Non-Cryst. Solids 109, 1 (1989).CrossRefGoogle Scholar
33. Ennas, G. (private communication).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nickel oxide–silica and nickel–silica aerogel and xerogel nanocomposite materials
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Nickel oxide–silica and nickel–silica aerogel and xerogel nanocomposite materials
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Nickel oxide–silica and nickel–silica aerogel and xerogel nanocomposite materials
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *