Hostname: page-component-7d8f8d645b-h5t26 Total loading time: 0 Render date: 2023-05-28T02:19:46.528Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Microstructure, microhardness, and superconductivity of CeO2-added Y–Ba–Cu–O superconductors

Published online by Cambridge University Press:  31 January 2011

Chan-Joong Kim
Affiliation:
Superconductivity Research Department, Korea Atomic Energy Research Institute, P.O. Box 7, Daedukdanji, Daejon, 305-353, Korea
Ki-Baik Kim
Affiliation:
Superconductivity Research Department, Korea Atomic Energy Research Institute, P.O. Box 7, Daedukdanji, Daejon, 305-353, Korea
Gye-Won Hong
Affiliation:
Superconductivity Research Department, Korea Atomic Energy Research Institute, P.O. Box 7, Daedukdanji, Daejon, 305-353, Korea
Dong-Yeon Won
Affiliation:
Superconductivity Research Department, Korea Atomic Energy Research Institute, P.O. Box 7, Daedukdanji, Daejon, 305-353, Korea
Byoung-Hwan Kim
Affiliation:
Department of Physics, Han Nam University, 313 O-jeong Dong, Daeduk Gu, Daejon, 300-791, Korea
Chun-Taik Kim
Affiliation:
Department of Physics, Han Nam University, 313 O-jeong Dong, Daeduk Gu, Daejon, 300-791, Korea
Hong-Chul Moon
Affiliation:
Department of Materials Science and Engineering, Choongnam National University, Daeduk Science Town, Daejon, 301-764, Korea
Dong-Soo Suhr
Affiliation:
Department of Materials Science and Engineering, Choongnam National University, Daeduk Science Town, Daejon, 301-764, Korea
Get access

Abstract

The CeO2-added Y–Ba–Cu–O oxides were prepared by two different processes, the conventional solid-state reaction process and the partial melt process using powders, to examine the effect of the dopant on microstructure, microhardness, and superconductivity. In the solid-state reacted sample, most of the added CeO2 was converted to a form of BaCeO3, but some might enter into the 1-2-3 phase, resulting in the orthorhombic-to-tetragonal phase transition that accompanied the disappearance of twin structure in 1-2-3 grains. In the partially melted sample, however, the phase change was not observed up to 5 wt. % of CeO2. All the added CeO2 in these samples was consumed to form only BaCeO3 which was finely dispersed in large 1-2-3 grains during the peritectic reaction stage. The zero resistance temperature (Tc) of the solid-state reacted sample gradually decreased with increasing CeO2 content due to the phase change and the formation of BaCeO3, whereas the Tc of the partially melted sample was nearly constant regardless of CeO2 content up to 5 wt. %, owing to the separation of the second phase from the 1-2-3 superconducting phase. Microhardness of the partially melted sample increased with increasing CeO2 content. The strengthening effect appears to come from the composite system where the fine BaCeO3 particles are dispersed in a 1-2-3 matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jin, S., Tiefel, T., Sherwood, R., van Dover, R., Davis, M., Kammlott, G., and Fastnacht, R., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
2.Murakami, M., Morita, M., Doi, K., and Koyama, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
3.Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
4.Ni, B., Kobayashi, M., Funaki, K., Yamafuji, K., and Matsushita, T., Jpn. J. Appl. Phys. 30, L1861 (1991).CrossRefGoogle Scholar
5.Mizuno, F., Masuda, H., Hirabayashi, I., and Tanaka, S., Jpn. J. Appl. Phys. 28, L780 (1989).CrossRefGoogle Scholar
6.Oka, T., Ogasawara, F., Itoh, Y., Suganuma, M., and Mizutani, U., Jpn. J. Appl. Phys. 29, 1924 (1990).CrossRefGoogle Scholar
7.Ling, H.C. and Yan, M.F., J. Appl. Phys. 64, 1307 (1988).CrossRefGoogle Scholar
8.Singh, J.P., Leu, H.J., Poeppel, R.B., Van Voorhees, E., Goudey, G.T., Winsley, K., and Shi, Donglu, J. Appl. Phys. 66, 3154 (1989).CrossRefGoogle Scholar
9.Nishio, T., Itoh, Y., Ogasawara, F., Suganuma, M., Yamada, Y., and Mizutani, U., J. Mater. Sci. 24, 3228 (1989).CrossRefGoogle Scholar
10.Kao, Y.H., Yao, Y.D., Jang, L.Y., Xu, F., Krol, A., Song, L.W., Sher, C.J., Darovsky, A., Phillips, J.C., Simmins, J.J., and Snyder, R.L., J. Appl. Phys. 67, 353 (1990).CrossRefGoogle Scholar
11.Kim, C.J., Moon, H.C., Kim, K.B., Kwon, S.C., Suhr, D.S., Suh, I.S., and Won, D. Y., to be published in J. Mater. Sci. Lett.Google Scholar
12.Morita, M., Tanaka, M., Takebayashi, S., Kimura, K., Miyamoto, K., and Sawano, K., Jpn. J. Appl. Phys. 30, L813 (1991).CrossRefGoogle Scholar
13.Osamura, K., Matsukura, N., Kusumoto, Y., Ochiai, S., Ni, B., and Matsshita, T., Jpn. J. Appl. Phys. 29, L1621 (1990).CrossRefGoogle Scholar
14.Shimoyama, J., Kase, J., Kondoh, S., Yanagisawa, E., Matsubara, T., Suzuki, M., and Morimoto, T., Jpn. J. Appl. Phys. 29, L1999 (1990).CrossRefGoogle Scholar
15.McGinn, P., Chen, W., Zhu, N., Tan, L., Varanasi, C., and Sengupta, S., Appl. Phys. Lett. 59, 120 (1991).CrossRefGoogle Scholar
16.Kim, C.J., Kim, K.B., Lee, K.W., Lee, C.T., Hong, G.W., Chang, I.S., and Won, D. Y., Mater. Lett. 11, 241 (1991).CrossRefGoogle Scholar
17.Asaka, T., Okazawa, Y., Shiomi, Y., and Tachikawa, K., Jpn. J. Appl. Phys. 30, L1264 (1991).CrossRefGoogle Scholar
18.Lee, D. and Salama, K., Jpn. J. Appl. Phys. 29, L2017 (1990).CrossRefGoogle Scholar
19.Maple, M. B., Dalichaouch, Y., Ferreira, J.M., Hake, R.R., Lee, B.W., Neumeier, J.J., Torikachvili, M.S., Yang, K.N., and Zhou, H., Physica B 148, 155 (1987).CrossRefGoogle Scholar
20.Yang, K.N., Lee, B.W., Maple, M.B., and Laderman, S.S., Appl. Phys. A 46, 229 (1988).CrossRefGoogle Scholar
21.Ohshima, S. and Waiyama, T., Jpn. J. Appl. Phys. 26, L815 (1987).CrossRefGoogle Scholar
22.Sampathikumaran, E.V., Suzuki, A., Kohn, K., Shibuya, T., Tohdake, A., and Ishikawa, M., Jpn. J. Appl. Phys. 27, L584 (1988).CrossRefGoogle Scholar
23.Kim, C. J., Lee, H. G., Kuk, I. H., Chang, I. S., Rim, C. S., Han, P. S., and Won, D. Y., J. Mater. Sci. 25, 2165 (1990).CrossRefGoogle Scholar
24.Ichihashi, T., Iijima, S., Kubo, Y., Shimakawa, Y., and Tabuchi, J., Jpn. J. Appl. Phys. 27, L594 (1988).CrossRefGoogle Scholar
25.Kim, C. J., Kim, T. N., Kim, K. B., Kwon, S. C., Lee, H. G., and Won, D. Y., J. Korean Inst. Metals 29, 57 (1991).Google Scholar
26.Cook, R. F., Dinger, T. R., and Clarke, D. R., Appl. Phys. Lett. 51, 454 (1987).CrossRefGoogle Scholar