Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-27T20:59:27.414Z Has data issue: false hasContentIssue false

Microstructural investigation of low temperature chemical vapor deposited 3C-SiC/Si thin films using single-source precursors

Published online by Cambridge University Press:  26 July 2012

B-T. Lee
Affiliation:
Chonnam National University, Kwangju 500-757, Korea
D-K. Kim
Affiliation:
Chonnam National University, Kwangju 500-757, Korea
C-K. Moon
Affiliation:
Chonnam National University, Kwangju 500-757, Korea
J. K. Kim
Affiliation:
Chonnam National University, Kwangju 500-757, Korea
Y. H. Seo
Affiliation:
Chonbuk National University, Chonju, Korea
K. S. Nahm
Affiliation:
Chonbuk National University, Chonju, Korea
H. J. Lee
Affiliation:
Chonbuk National University, Chonju, Korea
K-W. Lee
Affiliation:
Korea Research Institute of Chemical Technology, Taejon, Korea
K-S. Yu
Affiliation:
Korea Research Institute of Chemical Technology, Taejon, Korea
Y. Kim
Affiliation:
Korea Research Institute of Chemical Technology, Taejon, Korea
S. J. Jang
Affiliation:
Dongshin University, Naju, Korea
Get access

Extract

Transmission electron microscopy (TEM) was utilized to investigate microstructures of heteroepitaxial SiC/Si films, grown from single-source precursors such as tetramethylsilane [TMS, Si(CH3)4], hexamethyldisilane [HMDS, Si2(CH3)6], and 1,3-disilabutane [1,3-DSB, H3SiCH2SiH2CH3]. In the case of TMS/H2 and HMDS/H2 samples, SiC/Si films grown at relatively high precursor concentration and/or low temperatures showed columnar grains with a high degree of epitaxial relationship with the Si substrate. Higher quality films with larger grains were observed in the case of high temperature and/or low precursor concentration samples, although a high density of interfacial voids was observed. Samples grown from pure 1,3-DSB at a low pressure showed high quality single crystalline films with few interfacial voids. It was suggested that the microstructural behavior of these films closely resembles that of the SiC films formed during the carbonization of Si surfaces by the pyrolysis of hydrocarbons, in which the nucleation rate of the film at the initial stage plays a key role. The improvement achieved during the 1,3-DSB growth is proposed to be due to the low growth pressure and the 1 : 1 ratio of Si and C associated with this precursor.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nishino, S., Suhara, H., Ono, H., and Matsunami, H., J. Appl. Phys. 61, 4889 (1987).CrossRefGoogle Scholar
2.Kordina, O., Bjorketun, L. O., Henry, A., Hallin, C., Glass, R. C., Hultman, L., Sundgren, J. E., and Janzen, E., J. Cryst. Gr. 154, 303 (1995).Google Scholar
3.Golecki, I., Reidinger, F., and Marti, J., Appl. Phys. Lett. 60, 1703 (1992).CrossRefGoogle Scholar
4.Seo, Y. H., Nahm, K. S., Suh, E. K., Lee, Y. H., Lee, H. J., and Hwang, Y. G., Technical Digest, Proc. Int. Conf. SiC Rel. Mat. 1995, Kyoto, Japan, p. 336.Google Scholar
5.Steckl, A. J., Yuan, C., Li, J.P., and Loboda, M. J., Appl. Phys. Lett. 63, 3347 (1993).CrossRefGoogle Scholar
6.Takahashi, K., Nishino, S., and Saraie, J., J. Electrochem. Soc. 139, 3565 (1992).CrossRefGoogle Scholar
7.Wu, C. H., Jacob, C., Ning, X. J., Nishino, S., and Pirouz, P., J. Cryst. Gr. 158, 480 (1996).CrossRefGoogle Scholar
8.Lee, K. W., Yu, K. S., Ku, S. J., Kim, C. G., Koh, W., Joh, J. K., and Kim, Y., J. Korean Vacuum Soc. 5, 133 (1996).Google Scholar
9.Lee, K-W., Yu, K-S., and Kim, Y., J. Cryst. Growth 179, 153160 (1997).CrossRefGoogle Scholar
10.Carter, C. H., Davis, R. F., and Nutt, S. R., J. Mater. Res. 1, 811 (1987).CrossRefGoogle Scholar
11.Nutt, S. R., Smith, D. J., Kim, H. J., and Davis, R. F., Appl. Phys. Lett. 50, 203 (1987).CrossRefGoogle Scholar
12.Pirouz, P., Chorey, C. M., and Powell, J. A., Appl. Phys. Lett. 50, 221 (1987).CrossRefGoogle Scholar
13.Mogab, C. M. and Leamy, H. J., J. Appl. Phys. 45, 1075 (1974).CrossRefGoogle Scholar
14.Li, J. P. and Steckl, A. J., J. Electrochem. Soc. 142, 634 (1995).CrossRefGoogle Scholar