Hostname: page-component-588bc86c8c-br67x Total loading time: 0 Render date: 2023-11-30T12:18:10.868Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Luminescent silica nanotubes and nanowires: Preparation from cellulose whisker templates and investigation of irradiation-induced luminescence

Published online by Cambridge University Press:  31 January 2011

Cordt Zollfrank*
Department of Materials Science and Engineering—Glass and Ceramics, Friedrich-Alexander University of Erlangen-Nuremberg, D-91058 Erlangen, Germany
Peter Greil
Department of Materials Science and Engineering—Glass and Ceramics, Friedrich-Alexander University of Erlangen-Nuremberg, D-91058 Erlangen, Germany
a) Address all correspondence to this author. e-mail:
Get access


Luminescent silica nanotubes and nanowires were fabricated from cellulose whisker templates by sol-gel processing. The cellulose templates were removed by calcination at 650 °C to generate silica nanotubes with diameters of 15 nm and lengths up to 500 nm. At temperatures of 900 °C the core region previously occupied by the cellulose template was closed yielding silica nanowires. Cathodoluminescence spectra of the silica nanotubes and nanowires were measured in the transmission electron microscope during irradiation with 150 keV electrons. A blue emission at 450 nm was observed for the silica nanowires calcined at 900 °C. This luminescence was found to be related to defects induced by electron irradiation and was investigated in situ as a function of irradiation dose. The as-synthesized and 650 °C calcined nanowires and nanotubes showed a fast decay of the signal. The observed irradiation dose dependent changes in the luminescence spectra will be discussed in terms of defect formation and transformation mechanisms.

Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Patzke, G.R., Krumeich, F., and Nesper, R.: Oxidic nanotubes and nanorods—Anisotropic modules for a future nanotechnology. Angew. Chem. Int. Ed. 41, 2446 (2002).Google Scholar
2.Tong, L., Gattass, R.R., Ashcom, J.B., He, S., Lou, J., Shen, M., Maxwell, I., and Mazur, E.: Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816 (2003).Google Scholar
3.Zhang, Y., Suenaga, K., Colliex, C., and Iijima, S.: Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science 281, 973 (1998).Google Scholar
4.Mitchell, D.T., Lee, S.B., Trofin, L., Li, N., Nevanen, T.K., Söderlund, H., and Martin, C.R.: Smart nanotubes for bioseparation and biocatalysis. J. Am. Chem. Soc. 124, 11864 (2002).Google Scholar
5.He, B., Son, S.J., and Lee, S.B.: Shape-coded silica nanotubes for biosensing. Langmuir 22, 8263 (2006).Google Scholar
6.Yu, D.P., Hang, Q.L., Ding, Y., Zhang, H.Z., Bai, Z.G., Wang, J.J., Zou, Y.H., Quian, W., Xiong, G.C., and Feng, S.Q.: Amorphous silica nanowires: Intensive blue light emitters. Appl. Phys. Lett. 73, 3076 (1998).Google Scholar
7.Wu, X.C., Song, W.H., Wang, K.Y., Hu, T., Zhao, B., Sun, Y.P., and Du, J.J.: Preparation and photoluminescence properties of amorphous silica nanowires. Chem. Phys. Lett. 336, 53 (2001).Google Scholar
8.Jang, J. and Yoon, H.: Novel fabrication of size-tunable silica nanotubes using a reverse-microemulsion-mediated sol-gel method. Adv. Mater. 16, 799 (2004).Google Scholar
9.Chang, H.J., Chen, Y.F., Lin, H.P., and Mou, C.Y.: Strong visible photoluminescence from SiO2 nanotubes at room temperature. Appl. Phys. Lett. 78, 3791 (2001).Google Scholar
10.Zhang, M., Ciocan, E., Bando, Y., Wada, K., Cheng, L.L., and Pirouz, P.: Bright visible photoluminescence from silica nanotube flakes prepared by the sol-gel template method. Appl. Phys. Lett. 80, 491 (2002).Google Scholar
11.Nishikawa, H., Shiroyama, T., Nakamura, R., Ohki, Y., Nagasawa, K., and Hama, Y.: Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation. Phys. Rev. B 45, 586 (1992).Google Scholar
12.Liao, L.S., Bao, X.M., Zheng, X.Q., Li, N.S., and Min, N.B.: Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon. Appl. Phys. Lett. 68, 850 (1996).Google Scholar
13.Stathis, J.H. and Kastner, M.A.: Time-resolved photoluminescence in amorphous silicon dioxide. Phys. Rev. B 35, 2972 (1987).Google Scholar
14.Skuja, L.: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids 16, 239 (1998).Google Scholar
15.Tohmon, R., Shimogaichi, Y., Mizuno, H., and Ohki, Y.: 2.7 eV luminescence in as-manufactured high-purity silica glass. Phys. Rev. Lett. 62, 1388 (1989).Google Scholar
16.Skuja, L.N., Streletsky, A.N., and Pakovich, A.B.: A new intrinsic defect in amorphous SiO2: Twofold coordinated silicon. Solid State Commun. 50, 1069 (1984).Google Scholar
17.Tanimura, K., Itoh, C., and Itoh, N.: Optical studies of self-trapped excitons in SiO2. J. Phys. C: Solid State Phys. 21, 1869 (1988).Google Scholar
18.McKnight, S.W. and Palik, E.D.: Cathodoluminescence of SiO2 films. J. Non-Cryst. Solids 40, 595 (1980).Google Scholar
19.Tanimura, K., Tanaka, K., and Itoh, N.: Creation of quasistable lattice defects by electronic excitation in SiO2. Phys. Rev. Lett. 51, 423 (1983).Google Scholar
20.Miller, A.J., Leisure, R.G., Mashkov, V.A., and Galeener, F.L.: Dominant role of E′ centers in x-ray-induced, visible luminescence in high-purity amorphous silicas. Phys. Rev. B 53, R8818 (1996).Google Scholar
21.Imai, H., Arai, K., Imagawa, H., Hosono, H., and Abe, Y.: Two types of oxygen-deficient centers in synthetic silica glass. Phys. Rev. B 38, 12772 (1988).Google Scholar
22.Tsai, T.E., Griscom, D.L., and Friebele, E.J.: Mechanism of intrinsic Si E′-center photogeneration in high-purity silica. Phys. Rev. Lett. 61, 444 (1988).Google Scholar
23.Watanabe, M., Juodkazis, S., Sun, H.B., Matsuo, S., and Misawa, H.: Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica. Phys. Rev. B 60, 9959 (1999).Google Scholar
24.Weinberg, Z.A., Rubloff, G.W., and Bassous, E.: Transmission, photoconductivity, and the experimental band gap of thermally grown SiO2 films. Phys. Rev. B 19, 3107 (1979).Google Scholar
25.Stevens, M.A.Kalceff: Cathodoluminescence microcharacteriza-tion of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide. Phys. Rev. B 57, 5674 (1998).Google Scholar
26.Salh, R., von Czarnowski, A., Zamoryanskaya, M.V., Kole-snikova, E.V., and Fitting, H-J.: Cathodoluminescence of SiOx understoichiometric silica layers. Phys. Status Solidi A 203, 2049 (2006).Google Scholar
27.Imai, H., Arai, K., Isoya, J., Hosono, H., Abe, Y., and Imagawa, H.: Generation of E' centers and oxygen hole centers in synthetic silica glasses by λ irradiation. Phys. Rev. B 48, 3116 (1993).Google Scholar
28.Galeener, F.L., Kerwin, D.B., Miller, A.J., and Mikkelsen, J.C. Jr: X-ray creation and activation of electron spin resonance in vitreous silica. Phys. Rev. B 47, 7760 (1993).Google Scholar
29.Mashkov, V.A., Austin, W.R., Zhang, L., and Leisure, R.G.: Fundamental role of creation and activation in radiation-induced defect production in high-purity amorphous SiO2. Phys. Rev. Lett. 76, 2926 (1996).Google Scholar
30.Griscom, D.L.: Defect structure of glasses. J. Non-Cryst. Solids 73, 51 (1985).Google Scholar
31.Ruüscher, C.H., Bannat, I., Feldhoff, A., Ren, L., and Wark, M.: SiO2 nanotubes with nanodispersed Pt in the walls. Microporous Meso-porous Mater. 99, 30 (2007).Google Scholar
32.Wang, J., Tsung, C.K., Hong, W., Wu, Y., Tang, J., and Stucky, G.D.: Synthesis of mesoporous silica nanofibers with controlled pore architectures. Chem. Mater. 16, 5169 (2004).Google Scholar
33.Ono, Y., Kanekiyo, Y., Inoue, K., Hojo, J., Nango, M., and Shinkai, S.: Novel hollow fiber silica using collagen fibers as a template. Chem. Lett. (Jpn.) 28, 475 (1999).Google Scholar
34.Huang, L., Wang, H., Hayashi, C.Y., Tian, B., Zhao, D., and Yan, Y.: Single-strand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers. J. Mater. Chem. 13, 666 (2003).Google Scholar
35.Zollfrank, C., Scheel, H., and Greil, P.: Regioselectively ordered silica nanotubes by molecular templating. Adv. Mater. 19, 984 (2007).Google Scholar
36.Ranby, B.G.: The colloidal properties of cellulose micelles. Discuss. Faraday Soc. 11, 158 (1951).Google Scholar
37.Klemm, D., Philipp, B., Heinze, T., Heinze, U., and Wagenknecht, W.: Comprehensive Cellulose Chemistry, Vol. 1 (Wiley-VCH, Weinheim, Germany, 1998), pp. 1524.Google Scholar
38.Samir, M.A.S.A., Alloin, F., and Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612 (2005).Google Scholar
39.Dong, X.M., Revol, J.F., and Gray, D.G.: Effect of microcrystallite preparation conditions on the formation of colloid crystals on cellulose. Cellulose 5, 19 (1998).Google Scholar
40.Shin, Y., Bae, I-T., Arey, B.W., and Exarhos, G.J.: Simple preparation and stabilization of nickel nanocrystals on cellulose nanocrystal. Mater. Lett. 61, 3215 (2007).Google Scholar
41.Nelson, K. and Deng, Y.: The shape dependence of core-shell and hollow titania nanoparticles on coating thickness during layer-by-layer and sol-gel synthesis. Nanotechnology 17, 3219 (2006).Google Scholar
42.Dujardin, E., Blaseby, M., and Mann, S.: Synthesis of mesoporous silica by sol-gel mineralization of cellulose nanorod nematic suspensions. J. Mater. Chem. 13, 696 (2003).Google Scholar Dood, M.J.A., Berhout, B., van Kats, C.M., Polman, A., and van Blaaderen, A.: Acid-based synthesis of monodisperse rare-earth doped colloidal SiO2 spheres. Chem. Mater. 14, 2849 (2002).Google Scholar
44.Brinker, C.J. and Scherer, G.W.: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, CA, 1990), p. 118.Google Scholar
45.Roberts, J.C.: Paper Chemistry (Blackie, Glasgow, Scotland, 1996).Google Scholar
46.Fitting, H-J., Ziems, T., Salh, R., Zamoryanskaya, M.V., Kolesnikova, E.V., Schmidt, B., and von Czarnowski, A.: Cathodoluminescence of wet, dry, and hydrogen-implanted silica films. J. Non-Cryst. Solids 351, 2251 (2005).Google Scholar
47.Williams, D.B. and Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science (Plenum Press, New York, 1996), p. 62.Google Scholar
48.Devine, R.A.B., Capponi, J.J., and Arndt, J.: Oxygen-diffusion kinetics in densified, amorphous SiO2. Phys. Rev. B 35, 770 (1987).Google Scholar
49.Goldberg, M., Fitting, H-J., and Trukhin, A.: Cathodoluminescence and cathodoelectro-luminescence of amorphous SiO2 films. J. Non-Cryst. Solids 220, 69 (1997).Google Scholar
50.Fitting, H-J., Barfels, T., Trukhin, A.N., Schmidt, B., Gulans, A., and von Czarnowski, A.: Cathodoluminescence of Ge+, Si+, and O+ implanted SiO2 layers and the role of mobile oxygen in defect transformations. J. Non-Cryst. Solids 303, 218 (2002).Google Scholar
51.Scheel, H., Frank, G., and Strunk, H.P.: Electron radiation damage in Cu(In,Ga)Se2 analyzed in situ by cathodoluminescence in a transmission electron microscope. Phys. Status Solidi A 202, 2336 (2005).Google Scholar