Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-fkkrz Total loading time: 0.22 Render date: 2021-06-14T07:24:55.156Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Low-temperature chemical routes to formation and IR properties of lanthanum sesquisulfide (La2S3) ceramics

Published online by Cambridge University Press:  31 January 2011

Prashant N. Kumta
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890
Subhash H. Risbud
Affiliation:
Division of Materials Science and Engineering, The University of California, Davis, California 95616
Get access

Abstract

Lanthanum sulfide (La2S3) exists in three different allotropic forms in the crystalline state. The low-temperature orthorhombic phase (α) transforms to the intermediate tetragonal phase (β) which further undergoes transformation to the high-temperature cubic phase (γ). The intermediate tetragonal phase (β) is an oxysulfide with possible use as a phosphor, and the cubic phase (γ) of La2S3 shows potential for application as a far IR (8–14 μm) window material. We report metal-organic synthesis routes for the preparation of the β- and γ-phases of La2S3 by processing modifications and choice of precursor chemistry. The alkoxide-derived precursors and the transformed sulfide powders were characterized for morphology, microstructure, and thermal stability. Phase evolution studies were also conducted, and the results are discussed in the context of formation of the β- and γ-phases. Results of densification, microstructure, and infrared transmission characteristics are also presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below.

References

1Musikant, S., Optical Materials, An Introduction to Selection and Application (Marcel Dekker, Inc., New York, 1985).Google Scholar
2Newnham, R. E., Structure-Property Relations, edited by Roy, R. (Springer-Verlag, New York, Heidelberg, Berlin, 1975).CrossRefGoogle Scholar
3Savage, J. A., Infrared Optical Materials and Their Antireflection Coatings (Adam Hilger Ltd., Bristol and Boston, 1985).Google Scholar
4Klocek, P., Mater. Res. Bull. V, 41 (1986).CrossRefGoogle Scholar
5Morgan, P.E.D. and Koutsoutis, M.S., Mater. Res. Bull. XXII, 617 (1987).CrossRefGoogle Scholar
6Wyckoff, R. W. G., Crystal Structures, II, 2nd ed. (Interscience Publishers, 1960), Vol. 2, p. 160.Google Scholar
7Wyckoff, R. W. G., Crystal Structures, II, 2nd ed. (Interscience Publishers, 1960), Vol. 2, p. 75.Google Scholar
8Roy, D., SPIE Proc. 297, 24 (1981).CrossRefGoogle Scholar
9Kamarzin, A. A., Mironov, K. E., Sokolov, V. V., Maovitsky, Tu. N., and Vasil'Yeva, I. G., J. Cryst. Growth 52, 619 (1981).CrossRefGoogle Scholar
10Flahaut, J., in Handbook on the Physics and Chemistry of Rare Earths 4, 1 (1979).CrossRefGoogle Scholar
11Lowe-Ma, C., in Advances in Materials Characterization, edited by Rossington, D. R., Condrate, R. A., and Snyder, R. L. (Plenum, New York, 1983).Google Scholar
12Sleight, A. W. and Prewitt, C. T., Inorg. Chem. 7, 2282 (1968).CrossRefGoogle Scholar
13White, W. B. and Knight, D. S., paper presented at the 92nd Annual Meeting of the American Ceramic Society, Dallas, TX, April 22-26, 1990, p. 178.Google Scholar
14Luguev, S.M., Lugueva, N. V., Sokolov, V. V., and Malovitskii, Yu. N., Inorg. Mater. 21, 762 (1985).Google Scholar
15Loginova, E. M., Grizik, A. A., Ponomarev, N. M., and Eliseev, A. A., Inorg. Mater. 11, 644 (1975).Google Scholar
16Volynets, F. K., Dronova, G. N., Vekshina, N. V., and Mironov, I. A., Inorg. Mater. 13, 432 (1977).Google Scholar
17Flahaut, J., Guittard, M., Patrie, M., Pardo, M. P., Golabi, S. M., and Domange, L., Acta Crystallogr. 19, 14 (1965).CrossRefGoogle Scholar
18Flahaut, J., Domange, L., and Patrie, M., Bull. Soc. Chim., 2048 (1962).Google Scholar
19Besangon, P., Carre, D., Laruelle, P., and Flahaut, J., in Proc. 9th Rare Earth Research Conf., edited by Field, P.E. (1971), Vol. 1, p. 113.Google Scholar
20Besangon, P., J. Solid State Chem. 7, 232 (1973).CrossRefGoogle Scholar
21Walker, P. J. and Ward, R. C. C., Mater. Res. Bull. XIX, 717 (1984).CrossRefGoogle Scholar
22Zachariasen, W.H., Acta Crystallogr. 2, 57 (1949).CrossRefGoogle Scholar
23Covino, J., Harris, D.C., Hills, M.E., Loda, R.T., and Schwartz, R.W., SPIE Proc. 505, 42 (1984).CrossRefGoogle Scholar
24Gschneidner, K. A. Jr, Nakahara, J. F., Beaudry, B. J., and Takeshita, T., in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T. L., and Wood, C. (Mater. Res. Soc. Symp. Proc. 97, Pittsburgh, PA, 1987), p. 359.Google Scholar
25Amano, T., Beaudry, B.J., and Gschneidner, K. A. Jr, J. Appl. Phys. 59, 3437 (1986).CrossRefGoogle Scholar
26Takeshita, T., Beaudry, B.J., and Gschneidner, K.A. Jr, in The Rare Earths in Modern Science and Technology, edited by McCarthy, G.T., Silber, H.B., and Rhyne, J.J. (Plenum Publishing Corporation, New York, 1982), Vol. 3, p. 255.CrossRefGoogle Scholar
27Takeshita, T., Beaudry, B.J., and Gschneidner, K.A. Jr, Fourth Int. Conf. on Thermoelectric Energy Conversion, edited by Rao, K. R. (Institute of Electrical and Electronic Engineers, New York, 1982), p. 48.Google Scholar
28Beaudry, B.J., Tschetter, M.J., Nakahara, J.F., Takeshita, T., and Gschneidner, K. A. Jr, Sixth Int. Conf. on Thermoelectric Energy Conversion, The University of Texas at Arlington, edited by Rao, K. R., 1986, p. 20.Google Scholar
29Takeshita, T., Gschneidner, K.A. Jr, and Beaudry, B.J., J. Appl. Phys. 57, 4633 (1985).CrossRefGoogle Scholar
30Wood, C., Lockwood, A., Parker, J., Zoltan, A., and Zoltan, D., J. Appl. Phys. 58, 1542 (1985).CrossRefGoogle Scholar
31Whittenberger, J.D. and Smoak, R.H., J. Am. Ceram. Soc. 70, C90 (1987).CrossRefGoogle Scholar
32Lewis, K. L., Savage, J. A., Marsh, K. J., and Jones, A. P. C., SPIE Proc. 400, 12 (1983).Google Scholar
33Savage, J. A., Lewis, K. L., Kinsman, B. E., Wilson, A. R., and Riddle, R., SPIE Proc. 683, 79 (1986).CrossRefGoogle Scholar
34Laverenz, H. W., An Introduction to Luminescence of Solids (Wiley, New York, 1950), p. 473.Google Scholar
35Johnson, C.E., Hickey, D.K., and Harris, D.C., SPIE Proc. 683, 112 (1986).CrossRefGoogle Scholar
36Guiton, T.A., Czekaj, C.L., Rau, M.S., Geoffroy, G.L., and Pantano, C. G., Better Ceramics Through Chemistry, 3 (1988).Google Scholar
37Bensalem, A. and Schleich, D. M., Mater. Res. Bull. XXIII, 857 (1988).CrossRefGoogle Scholar
38Wang, L. H., Hon, M. H., Huang, W. L., and Lin, W. Y., Mater. Sci. Eng. B7, 237 (1990).CrossRefGoogle Scholar
39Wang, L. H., Hon, M. H., Huang, W. L., and Lin, W. Y., Mater. Res. Bull. XXVI, 649 (1991).CrossRefGoogle Scholar
40Wang, L.H., Hon, M.H., Huang, W.L., and Lin, W.Y., J. Mater. Sci. 26, 5013 (1991).CrossRefGoogle Scholar
41Han, Y. and Akinc, M., J. Am. Ceram. Soc. 74, 2815 (1991).CrossRefGoogle Scholar
42Kumta, P. N. and Risbud, S. H., Mater. Sci. Eng. B2, 281 (1989).CrossRefGoogle Scholar
43Kumta, P.N. and Risbud, S.H., Prog. Cryst. Growth Char. Mater. 22, 321 (1991).CrossRefGoogle Scholar
44Kumta, P.N. and Risbud, S.H., Proc. 4th Int. Conf. on Ultra-structure Processing of Ceramics, Composites and Glasses, “Ultrastructure Processing of Advanced Materials,” edited by Uhlmann, D. R. and Ulrich, D. R. (John Wiley, New York, 1992).Google Scholar
45Vickery, R. C., Chemistry of Lanthanons (Academic Press, New York, 1953), p. 237.Google Scholar
46Kumta, P.N., Phule, P.P., and Risbud, S.H., Mater. Lett. 5, 401 (1987).CrossRefGoogle Scholar
47Mackenzie, J. D. and Ono, K., Oxide Ceramic Fibers by the SolGel Method (Materials Laboratory, Air Force Wright Aeronautical Laboratory, 1989).Google Scholar
48Mazdiyasni, K. S., General Atomics, private communication (1989).Google Scholar
49Skoog, D. A., in Principles of Instrumental Analysis (Saunders College, 1985), p. 716.Google Scholar
50James, P. F., J. Non-Cryst. Solids 100, 93 (1988).CrossRefGoogle Scholar
51Powder Diffraction File, Joint Committee on Powder Diffraction Standards (International Center for Diffraction Data, Swarthmore, PA, 1975), Card 27-263.Google Scholar
52Chess, D. L., Chess, C. A., and White, W. B., J. Am. Ceram. Soc. 66, C205 (1983).CrossRefGoogle Scholar
53Melling, P.J., Ceram. Bull. 63, 1427 (1984).Google Scholar
54Powder Diffraction File, Joint Committee on Powder Diffraction Standards (International Center for Diffraction Data, Swarthmore, PA, 1973), Card 25-1041.Google Scholar
55Vaughan, C.M. and White, W.B., in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T. L., and Wood, C. (Mater. Res. Soc. Symp. Proc. 97, Pittsburgh, PA, 1987), p. 397.Google Scholar
56Hench, L. L., University of Florida, Gainesville, private communication, at the Proc. Fourth Int. Conf. on Ultrastructure Processing of Ceramics, Composites and Glasses (1989).Google Scholar
57Brown, L. M. and Mazdiyasni, K. S., Inorg. Chem. 9, 2783 (1970).CrossRefGoogle Scholar
58Powder Diffraction File, Joint Committee on Powder Diffraction Standards (International Center for Diffraction Data, Swarthmore, PA, 1968), Card 22-645.Google Scholar
59Saunders, K. J., Wong, T. Y., and Gentilman, R.L., SPIE Proc. 505, 31 (1984).CrossRefGoogle Scholar
60Henderson, J. R., Muramoto, M., Loh, E., and Gruber, J. B., J. Chem. Phys. 47, 3347 (1967).CrossRefGoogle Scholar
61Schevciw, O. and White, W.B., Mater. Res. Bull. XVIII, 1059 (1983).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Low-temperature chemical routes to formation and IR properties of lanthanum sesquisulfide (La2S3) ceramics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Low-temperature chemical routes to formation and IR properties of lanthanum sesquisulfide (La2S3) ceramics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Low-temperature chemical routes to formation and IR properties of lanthanum sesquisulfide (La2S3) ceramics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *