Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T13:44:04.769Z Has data issue: false hasContentIssue false

Liquid supercoolings and droplet cooling rates of remelted argon-atomized Fe–30Ni powder particles

Published online by Cambridge University Press:  31 January 2011

Matthew R. Libera
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Pedro P. Bolsaitis
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
R. Erik Spjut
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
John B. VanderSande
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

Individual particles of argon-atomized Fe-30Ni powder are electrodynamically levitated and remelted by a CO2 laser pulse. The thermal history of each droplet during remelting and solidification is monitored by single-color radiation pyrometry at each of three wavelengths (850, 750, and 550 nm). Experiments are done in an atmosphere of either air or nitrogen. The average supercooling of six experiments performed in nitrogen is 298 K with a standard deviation of 14 K. This value is of the same order as several others reported in the literature using bulk levitation and emulsification techniques. The average supercooling of seven experiments performed in air is 163 K with a standard deviation of 20 K. The difference suggests that oxides are forming in the air-remelting experiments and catalyzing nucleation at relatively low supercoolings. The average cooling rate of the liquid droplets prior to solidification in nitrogen is 1.5 × 105 K/s. This measured cooling rate is somewhat higher than that predicted by Newtonian heat flow modeling, and the difference is attributed to radiative losses not considered in the Newtonian model. The measured cooling rate is used to estimate the total heat transfer coefficient characterizing cooling of a small metal droplet in a quiescent gas atmosphere. A lower bound of 1.5 × 106 K/s on the droplet heating rate during recalescence and a minimum average liquid/solid interfacial velocity during recalescence of 0.1 m/s are estimated.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rapid Solidification Processing Principles and Technologies, edited by Mehrabian, R., Kear, B. H., and Cohen, M. (Claitors, Baton Rouge, 1980), Vols. I, II, III, and IV.Google Scholar
2Rapidly Solidified Crystalline Alloys, edited by Das, S. K., Kear, B. H., and Adam, C. (The American Institute of Metals, Warrendale, PA, 1985).Google Scholar
3Chu, M. G., Shiohara, Y., and Flemings, M. C., Metall. Trans. A 15, 1303 (1984).CrossRefGoogle Scholar
4Willnecker, R., Herlach, D. M., and Feuerbacher, B., Appl. Phys. Lett. 49, 1339 (1986).CrossRefGoogle Scholar
5Meuller, B. A. and Perepezko, J. H., Metall. Trans. A 18, 1143 (1987).CrossRefGoogle Scholar
6Rasmussen, D. H., Perepezko, J. H., and Loper, C. R., in Rapidly Quenched Metals, edited by Grant, N. J. and Giessen, B. C. (Massachusetts Institute of Technology, Cambridge, MA, 1976).Google Scholar
7Wu, Y., Piccone, T. J., Shiohara, Y., and Flemings, M. C., Metall. Trans. A 18, 915 (1987).CrossRefGoogle Scholar
8Kelly, T. F., Cohen, M., and Sande, J. B. Vander, Metall. Trans. A 15, 819 (1984).CrossRefGoogle Scholar
9Levi, C. G. and Mehrabian, R., Metall. Trans. A 13, 13 (1982).CrossRefGoogle Scholar
10Hofmeister, W. H., Evans, N. D., Bayuzick, R. J., and Robinson, M. B., Metall. Trans. A 17, 1421 (1986).CrossRefGoogle Scholar
11Libera, M. R. and Sande, J. B. Vander, Scr. Metall. 18, 1303 (1984).CrossRefGoogle Scholar
12Spjut, R. E., Barziv, E., Sarofim, A. F., and Longwell, J. P., Rev. Sci. Instrum. 57, 1604 (1986).CrossRefGoogle Scholar
13Spjut, R. E., Sarofim, A. F., and Longwell, J. P., Langmuir 1, 355 (1985).CrossRefGoogle Scholar
14Spjut, R. E., Ph.D. thesis, Massachusetts Institute of Technology, 1985.Google Scholar
15Davis, E. J. and Ray, A. K., J. Colloid Interface Sci. 75, 566 (1980).CrossRefGoogle Scholar
16Spjut, R. E., Opt. Eng. 26, 467 (1987).Google Scholar
17Sears, F. W. and Zemansky, M. W., College Physics (Addison-Wesley, Reading, MA, 1960), 3rd ed.Google Scholar
18Wuerker, R. F., Shelton, H., and Langmuir, R. V., J. Appl. Phys. 30, 342 (1958).CrossRefGoogle Scholar
19Libera, M. R., Sc.D. thesis, Massachusetts Institute of Technology, 1987.Google Scholar
20Foley, G. M., High Temp.-High Press. 10, 391 (1978).Google Scholar
21Nordine, P. C., High Temp. Sci. 21, 97 (1986).Google Scholar
22Wilson, J. R., Metall. Rev. 10, 381 (1965).CrossRefGoogle Scholar
23CRC Handbook of Chemistry and Physics, edited by Weast, R. C. (Chemical Rubber Company, Boca Raton, FL, 1980), 60th ed.Google Scholar
24Kerker, M. and Cooke, D. D., J. Opt. Soc. Am. 72, 1267 (1982).CrossRefGoogle Scholar
25Preining, O., in Aerosol Science, edited by Davies, C. N. (Academic, London, 1966).Google Scholar
26Kerker, M., Am. Sci. 62, 92 (1974).Google Scholar
27Ashcroft, N. W. and Mermin, N. D., Solid State Physics (Saunders College, Philadelphia, 1976).Google Scholar
28Bar-Ziv, E., Spjut, R. E., Dudek, D. R., Sarofim, A. F., and Longwell, J. P., Combust. Flame (to be published).Google Scholar
29Sundman, B., Jansson, B., and Andersson, J-O., Calphad 9, 149 (1985).CrossRefGoogle Scholar
30Chuang, Y-Y., Hsieh, K-C., and Chang, Y. A., Metall. Trans. A 17, 1373 (1986).CrossRefGoogle Scholar
31Turnbull, D. and Cech, R. E., J. Appl. Phys. 21, 804 (1950).Google Scholar
32Kattamis, T. Z. and Flemings, M. C., Modern Casting 52, 191 (1967).Google Scholar
33Abbaschian, G. J. and Flemings, M. C., Metall. Trans. A 14, 1147 (1983).CrossRefGoogle Scholar
34Cohen, M., Kear, B. H., and Mehrabian, R., in Rapid Solidification Processing Principles and Technologies II, edited by Mehrabian, R., Kear, B. H., and Cohen, M. (Claitors, Baton Rouge, 1980).Google Scholar
35Levi, C. and Mehrabian, R., Metall. Trans. A 13, 221 (1982).CrossRefGoogle Scholar
36Grant, N. J., in Rapid Solidification Processing Principles and Technologies, edited by Mehrabian, R., Kear, B. H., and Cohen, M. (Claitors, Baton Rouge, 1978), pp. 230245.Google Scholar
37Cox, A. R., Moore, J. B., and Reuth, E. C. van, in The Proceedings of the Third International Symposium on Superalloys, Seven Springs, PA (Claitors, Baton Rouge, 1976).Google Scholar
38Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., Thermal Conductivity–Metallic Elements and Alloys (Plenum, New York, 1970), Vol. 1 of Thermophysical Properties of Matter.Google Scholar
39Touloukian, Y. S., Liley, P. E., and Saxena, S. C., Thermal Conductivity–Nonmetallic Liquids and Gases (Plenum, New York, 1970), Vol. 3 of Thermophysical Properties of Matter.Google Scholar
40Touloukian, Y. S. and Ho, C. Y., Properties of Selected Ferrous Alloying Elements (McGraw-Hill, New York, 1981).Google Scholar
41Geiger, G. H. and Poirier, D. R., Transport Phenomena in Metallurgy (Addison-Wesley, Reading, MA, 1973).Google Scholar