Hostname: page-component-594f858ff7-wfvfs Total loading time: 0 Render date: 2023-06-07T17:16:05.579Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Highly localized acoustic emission monitoring of nanoscale indentation contacts

Published online by Cambridge University Press:  06 January 2012

Natalia I. Tymiak
Hysitron, Inc., 5251 West 73rd Street, Minneapolis, Minnesota 55439
Antanas Daugela
Hysitron, Inc., 5251 West 73rd Street, Minneapolis, Minnesota 55439
Thomas J. Wyrobek
Hysitron, Inc., 5251 West 73rd Street, Minneapolis, Minnesota 55439
Oden L. Warren
Hysitron, Inc., 5251 West 73rd Street, Minneapolis, Minnesota 55439
Get access


This study evaluated a novel approach for acoustic emission (AE) monitoring of nanoindentation. The technique utilizes a miniature AE sensor integrated into a calibrated diamond indenter tip on a commercial nanoindentation system. The evaluation focused on the yield -point phenomenon in W (100); MgO (100); and sapphire C (0001); R (1012); A (1210); and M (1010) single-crystal surfaces. The minimum amount of elastic energy release sufficient to produce AE signal detectable with the indenter tip sensor was nearly two orders of magnitude lower than the minimum energy level required for conventional AE sensors. Wave forms detected with the indenter tip sensor were independent of sample size. A linear relationship between released elastic energies and the corresponding AE energies was observed for all three evaluated materials. The scaling coefficient of the linear relationship was independent of indenter tip size/shape and indentation depth. The differences between the mechanisms of the initial stages of plasticity for the various crystallographic orientations of sapphire were reflected in the following aspects of AE activity: detection of a specific type of AE wave form that correlated to the presence of linear surface features near the indentation sites; AE signal associated with the yield point, consisting either of one or two distinct wave forms; and presence or absence of AE signals after the yield point. The possibility of plasticity onset in sapphire involving both slip and twinning is discussed.

Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Lilleodden, E.T., Bonin, W., Nelson, J.C., Wyrobek, J.T., and Gerberich, W.W., J. Mater. Res. 10, 2162 (1995).CrossRefGoogle Scholar
Kramer, D.E., Yoder, K.B., and Gerberich, W.W., Philos. Mag. A 81, 2033 (2001).CrossRefGoogle Scholar
Sangwal, K.P., Gorostiza, P., and Sanz, F., Surf. Sci. 446, 314 (2000).CrossRefGoogle Scholar
Bhushan, B., Kulkarni, A.V., Bonin, W., and Wyrobek, J.T., Philos. Mag. A 74, 1117 (1996).CrossRefGoogle Scholar
Page, T.F., Oliver, W.C., and McHargue, C.J., J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
Rouby, D., Fleischmann, P., and Duvergier, C., Philos. Mag. A 47, 671 (1983).Google Scholar
Boiko, V.S., Ivanchenko, L.G., and Krivenko, L.F., Sov. Phys. Solid State 26, 1340 (1984).Google Scholar
Natsik, V.D. and Chishko, K.A., Sov. Phys. Solid State 20, 1117 (1978).Google Scholar
Chung, J.B. and Kannatey-Asibu, E., Jr., J. Appl. Phys. 72, 1812 (1992).CrossRefGoogle Scholar
Weiss, J. and Grasso, J.R., J. Phys. Chem. 101, 6113 (1997).CrossRefGoogle Scholar
Fisher, R.M. and Lally, J.S., Can. J. Phys. 45, 1147 (1967).CrossRefGoogle Scholar
Clough, R.B., Mater. Eval. 45, 556 (1987).Google Scholar
Gerberich, W.W. and Hartbower, C.E., Int. J. Fract. Mech. 3, 85 (1967).CrossRefGoogle Scholar
Kim, K.Y. and Sashe, W., J. Appl. Phys. 59, 2704 (1986).CrossRefGoogle Scholar
Pajares, A., Guiberteau, F., Lawn, B., and Lathabai, S., J. Am. Ceram. Soc. 78, 1083 (1995).CrossRefGoogle Scholar
Shiwa, M., Weppelmann, E.R., Bendeli, A., Swain, M.V., Munz, D., and Kishi, T., Surf. Coat. Technol. 68–69, 598 (1994).CrossRefGoogle Scholar
Swain, M.V. and Wittling, M., Surf. Coat. Technol., 76–77, 528 (1995).CrossRefGoogle Scholar
Weihs, T.P., Lawrence, C.V., Derby, B., Scruby, C.B., and Pethica, J.B., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Brawman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 61.Google Scholar
Bahr, D.F., Hoehn, J.W., Moody, N.R., and Gerberich, W.W., Acta Mater., 45, 1065 (1998).Google Scholar
Ali, N., Fan, Q.H., Gracio, J., Pereira, E., and Ahmed, W., Thin Solid Films 377–378, 193 (2000).CrossRefGoogle Scholar
Bull, S.J., Surf. Coat. Technol. 50, 25 (1991).CrossRefGoogle Scholar
Bahr, D.F., Kramer, D.E., and Gerberich, W.W., Acta Mater. 46, 3605 (1998).CrossRefGoogle Scholar
Bahr, D.F. and Gerberich, W.W., J. Mater. Res. 13, 1065 (1998).CrossRefGoogle Scholar
Daugela, A. and Wyrobek, J.T., in IEEE Transactions on Magnetics, Digest of Technical Papers edited by Pardavi-Horvath, M. and Corman, C. (Magnetics Conf. Proc., Toronto, ON, Canada, 2000), p. 581.Google Scholar
Daugela, A., Kutomi, H., and Wyrobek, T.J., Zeitschrift für Metall. 92, 1052 (2001).Google Scholar
Tymiak, N.I., Daugela, A., Page, T.F., and Gerberich, W.W., in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2000), p. Q7.6.1.Google Scholar
Lawn, B.R. and Wilshaw, T.R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, U.K., 1975), p. 117.Google Scholar
Corcoran, S.G., Colton, R.J., Lilleodden, E.T., and Gerberich, W.W., Phys. Rev. B 55, R160 57 (1997).CrossRefGoogle Scholar
Kiely, J.D., Hwang, R.Q., and Houston, J.E., Phys. Rev. Lett. 81, 4424 (1998).CrossRefGoogle Scholar
Mollis, S.E. and Clarke, D.R., J. Am. Ceram. Soc. 73, 3189 (1990).CrossRefGoogle Scholar
Hockey, B.J., J. Am. Ceram. Soc. 54, 223 (1971).CrossRefGoogle Scholar
Nowak, R. and Sakai, M., J. Mater. Res. 8, 1068 (1993).CrossRefGoogle Scholar
Nowak, R. and Sakai, M., Acta Metall. Mater. 42, 2879 (1994).CrossRefGoogle Scholar
Nowak, R., Sekino, T., and Niahara, K., Acta Mater. 47, 4329 (1999).CrossRefGoogle Scholar
Scruby, C., Wadley, H., and Sinclair, J.E., Philos. Mag. A 44, 249 (1981).CrossRefGoogle Scholar
Gerberich, W.W., Venkataraman, S.K., Huang, S.K., Harvey, S.E., and Kohlstedt, D.L., Acta Mater. 43, 1569 (1995).CrossRefGoogle Scholar
Crepin, J., Bretheau, T., Calldemaison, D., and Ferrer, F., Acta Mater. 48, 505 (2000).CrossRefGoogle Scholar