Hostname: page-component-7d684dbfc8-2bg86 Total loading time: 0.001 Render date: 2023-10-01T06:34:34.543Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix prepared by reactive pulsed laser deposition

Published online by Cambridge University Press:  31 January 2011

Jiada Wu*
State Key Laboratory for Advanced Photonic Materials and Devices, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
a) Address all correspondence to this author. e-mail:
Get access


Photoluminescence (PL) properties of SiOx thin films deposited by pulsed laser ablation of Si in a reactive oxygen ambient and annealed in a nitrogen atmosphere were studied at room temperature. Raman spectroscopy, Fourier transform infrared spectroscopy, and optical transmission measurements were used to characterize the deposited films before and after annealing and complement the PL studies. Strong PL due to quantum confinement was observed at room temperature from Si nanocrystals with an average diameter of approximately 5 nm at 325-nm light excitation. An apparent dependence of PL on the oxygen pressure for film deposition was observed. A detailed analysis of the effects of the annealing temperature revealed a significant PL evolution in luminescence intensity, spectrum profile, peak position, and spectrum range with the annealing temperature ranging from 300 to 1200 °C. Structural variations induced by thermal annealing of the films deposited at different oxygen pressures were also discussed on the basis of their correlation with the PL evolution.

Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
2Takagi, H., Ogawa, U., Yamazaki, Y., Ishizaki, A., and Nakagiri, T.: Quantum-size effects on photoluminescence in ultrafine Si particles. Appl. Phys. Lett. 56, 2379 (1990).CrossRefGoogle Scholar
3Shimizu-Iwayama, T., Fujita, K., Nakao, S., Saitoh, K., Fujita, T., and Itoh, N.: Visible photoluminescence in Si+-implanted silica glass. J. Appl. Phys. 75, 7779 (1994).CrossRefGoogle Scholar
4Guha, S., Pace, M.D., Dunn, D.N., and Singer, I.L.: Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing. Appl. Phys. Lett. 70, 1207 (1997).CrossRefGoogle Scholar
5Meldrum, A., Buchanan, K.S., Hryciw, A., and White, W.: Micropixelated luminescent nanocrystal arrays synthesized by ion implantation. Adv. Mater. 16, 31 (2004).CrossRefGoogle Scholar
6Hinds, B.J., Wang, F., Wolfe, D.M., Hinkle, C.L., and Lucovsky, G.: Study of SiOx decomposition kinetics and formation of Si nanocrystals in an SiO2 matrix. J. Non-Cryst. Solids 227, 507 (1998).CrossRefGoogle Scholar
7Wu, X., Ossadnik, Ch., Eggs, Ch., Veprek, S., and Phillipp, F.: Structure and photoluminescence features of nanocrystalline SiO/SiO2 films produced by plasma chemical vapor deposition and posttreatment. J. Vac. Sci. Technol., B 20, 1368 (2002).CrossRefGoogle Scholar
8Chen, X.Y., Lu, Y.F., Wu, Y.H., Cho, B.J., Tang, L.J., Lu, D., and Dong, J.R.: Correlation between optical properties and Si nanocrystal formation of Si-rich Si oxide films prepared by plasma-enhanced chemical vapor deposition. Appl. Surf. Sci. 253, 2718 (2006).CrossRefGoogle Scholar
9Kabashin, A.V., Charbonneau-Lefort, M., Meunier, M., and Leonelli, R.: Effects of deposition and post-fabrication conditions on photoluminescent properties of nanostructured Si/SiOx films prepared by laser ablation. Appl. Surf. Sci. 168, 328 (2000).CrossRefGoogle Scholar
10Chen, X.Y., Lu, Y.F., Wu, Y.H., Cho, B.J., Liu, M.H., Dai, D.Y., and Song, W.D.: Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed laser deposition in argon and oxygen ambient. J. Appl. Phys. 93, 6311 (2003).CrossRefGoogle Scholar
11Riabinina, D., Durand, C., Chaker, M., and Rosei, F.: Photoluminescent silicon nanocrystals synthesized by reactive laser ablation. Appl. Phys. Lett. 88, 073105 (2006).CrossRefGoogle Scholar
12Furukawa, K., Liu, Y., Nakashima, H., Gao, D., Uchino, K., Muraoka, K., and Tsuzuki, H.: Observation of Si cluster formation in SiO2 films through annealing process using x-ray photoelectron spectroscopy and infrared techniques. Appl. Phys. Lett. 72, 725 (1998).CrossRefGoogle Scholar
13Charvet, S., Madelon, R., Gourbilleau, F., and Rizk, R.: Ellipsometric spectroscopy study of photoluminescent Si/SiO2 systems obtained by magnetron co-sputtering. J. Lumin. 80, 257 (1999). 24, No. 7, Jul 2009CrossRefGoogle Scholar
14Rinnert, H., Vergnat, M., Marchal, G., and Burneau, A.: Strong visible photoluminescence in amorphous SiOx and SiOx:H thin films prepared by thermal evaporation of SiO powder. J. Lumin. 80, 445 (1999).CrossRefGoogle Scholar
15Fang, Y.C., Li, W.Q., Qi, L.J., Li, L.Y., Zhao, Y.Y., Zhang, Z.J., and Lu, M.: Photoluminescence from SiOx thin films: Effects of film thickness and annealing temperature. Nanotechnology 15, 494 (2004).CrossRefGoogle Scholar
16Rochet, F., Dufour, G., Roulet, H., Pelloie, B., Perriere, J., Fogarassy, E., Slaoui, A., and Froment, M.: Modification of SiO through room-temperature plasma treatments, rapid thermal annealings, and laser irradiation in a nonoxidizing atmosphere. Phys. Rev. B 37, 6468 (1988).CrossRefGoogle Scholar
17Islam, N. and Kumar, S.: Influence of surface states on the photoluminescence from silicon nanostructures. J. Appl. Phys. 93, 1753 (2003).CrossRefGoogle Scholar
18Schuppler, S., Friedman, S.L., Marcus, M.A., Adler, D.L., Xie, Y-H., Ross, F.M., Chabal, Y.J., Harris, T.D., Brus, L.E., Brown, W.L., Chaban, E.E., Szajowski, P.F., Christman, S.B., and Citrin, P.H.: Size, shape, and composition of luminescent species in oxidized Si nanocrystals and H-passivated porous Si. Phys. Rev. B: Condens. Matter 52, 4910 (1995).CrossRefGoogle ScholarPubMed
19Ehbrecht, M., Kohn, B., Huisken, F., Laguna, M.A., and Paillard, V.: Photoluminescence and resonant Raman spectra of silicon films produced by size-selected cluster beam deposition. Phys. Rev. B: Condens. Matter 56, 6958 (1997).CrossRefGoogle Scholar
20Brandt, M.S., Fuchs, H.D., Stutzmann, M., Weber, J., and Cardona, M.: The origin of visible luminescencefrom “porous silicon”: A new interpretation. Solid State Commun. 81, 307 (1992).CrossRefGoogle Scholar
21Glinka, Y.D., Lin, S-H., and Chen, Y-T.: The photoluminescence from hydrogen-related species in composites of SiO2 nanoparticles. Appl. Phys. Lett. 75, 778 (1999).CrossRefGoogle Scholar
22Wang, J., Song, L., Zou, B., and El-Sayed, M.A.: Time-resolved Fourier-transform infrared and visible luminescence spectroscopy of photoexcited porous silicon. Phys. Rev. B 591, 5026 (1999).CrossRefGoogle Scholar
23Prokes, S.M., Carlos, W.E., Veprek, S., and Ossadnik, Ch.: Defect studies in as-deposited and processed nanocrystalline Si/SiO2 structures. Phys. Rev. B: Condens. Matter 58, 15632 (1998).CrossRefGoogle Scholar
24Trwoga, P.F., Kenyon, A.J., and Pitt, C.W.: Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters. J. Appl. Phys. 83, 3789 (1988).CrossRefGoogle Scholar
25Takeoka, S. and Toshikiyo, K.: Photoluminescence from Si1-xGex alloy nanocrystals. Phys. Rev. B: Condens. Matter 61, 15988 (2000).CrossRefGoogle Scholar
26Wu, X., Bek, A., Bittner, A.M., Eggs, Ch., Ossadnik, Ch., and Veprek, S.: The effect of annealing conditions on the red photoluminescence of nanocrystalline Si/SiO2 films. Thin Solid Films 425, 175 (2003).CrossRefGoogle Scholar
27Lehmann, A., Schumann, L., and Hübner, K.: Optical phonons in amorphous silicon oxides. I. Calculation of the density of states and interpretation of LoTo Splittings of amorphous SiO2. Phys. Status Solidi B 117, 689 (1983).CrossRefGoogle Scholar
28Gunde, M.K.: Vibrational modes in amorphous silicon dioxide. Physica B (Amsterdam) 292, 286 (2000).CrossRefGoogle Scholar
29Schmidt, J.U. and Schmidt, B.: Investigation of Si nanocluster formation in sputter-deposited silicon sub-oxides for nanocluster memory structures. Mater. Sci. Eng., B 101, 28 (2003).CrossRefGoogle Scholar
30Wang, M., Yang, D., Li, D., Yuan, Z., and Que, D.: Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures. J. Appl. Phys. 101, 103504 (2007).CrossRefGoogle Scholar
31Riabinina, D., Durand, C., Margot, J., Chaker, M., Botton, G.A., and Rosei, F.: Nucleation and growth of Si nanocrystals in an amorphous SiO2 matrix. Phys. Rev. B: Condens. Matter 74, 075334 (2006).CrossRefGoogle Scholar
32Uchida, N., Okami, T., Tagami, H., Fukata, N., Mitome, M., Bando, Y., and Murakami, K.: Synthesis of silicon nanocrystals in aluminum-doped SiO2 film by laser ablation method. Physica E (Amsterdam) 38, 31 (2007).CrossRefGoogle Scholar
33Delley, B. and Steigmeier, E.F.: Quantum confinement in Si nanocrystals. Phys. Rev. B: Condens. Matter 47, 1397 (1993).CrossRefGoogle ScholarPubMed
34Yi, L.X., Heitmann, J., Scholz, R., and Zacharias, M.: Si rings, Si clusters, and Si nanocrystals–Different states of ultrathin SiOx layers. Appl. Phys. Lett. 81, 4248 (2002).CrossRefGoogle Scholar