Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-fstz4 Total loading time: 0.177 Render date: 2021-05-08T20:10:52.609Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Elucidation of the electrodeposition mechanism of molybdenum oxide from iso- and peroxo-polymolybdate solutions

Published online by Cambridge University Press:  03 March 2011

Todd M. McEvoy
Affiliation:
Department of Chemistry and Biochemistry, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712
Keith J. Stevenson
Affiliation:
Department of Chemistry and Biochemistry, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712
Corresponding
Get access

Abstract

The cathodic electrodeposition of molybdenum oxide thin films prepared from aqueous solutions containing iso-polymolybdates and peroxo-polymolybdates is described. Chronocoulometry, x-ray photoelectron spectroscopy, spectroelectrochemistry, and electrochemical quartz crystal microgravimetry were used to establish corresponding reaction mechanisms for films grown at different deposition potentials. Electrodeposition from acidified iso-polymolybdate solutions proceeds by the reduction of molybdic acid, whereas deposition from aqueous peroxo-based solutions involves the graded reduction of several solution components, primarily comprising molybdic acid and peroxo-polymolybdates. Careful regulation of the deposition potential allows for controlled growth of distinct molybdenum oxide compositions producing films with varied water content and valency.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below.

References

1Weckhuysen, B.M. and Wachs, I.E. in Handbook of Surfaces and Interfaces of Materials, Vol. 1, edited by Nalwa, H.S. (Academic Press, New York, 2001), p. 613.CrossRefGoogle Scholar
2Granqvist, C.G.Handbook of Inorganic Electrochromic Materials, 1st ed. (Elsevier, Amsterdam, 1995).Google Scholar
3Winter, M., Besenhard, J.O., Spahr, M.E. and Novak, P.: Adv. Mater. 10 725 (1998).3.0.CO;2-Z>CrossRefGoogle Scholar
4Iriyama, Y., Abe, T., Inaba, M. and Ogumi, Z.: Solid State Ionics 135 95 (2000).CrossRefGoogle Scholar
5Ferriera, F.F., Souza Cruz, T.G., Fantini, M.C.A., Tabacniks, M.H., de Castro, S.C., Morais, J., de Siervo, A., Landers, R. and Gorenstein, A.: Solid State Ionics 136–137 357 (2000).CrossRefGoogle Scholar
6Julien, C., Nazri, G.A., Guesdon, J.P., Gorenstein, A., Khelfa, A. and Hussain, O.M.: Solid State Ionics 319–26 73 (1994).Google Scholar
7Therese, G.H.A. and Kamath, P.V.: Chem. Mater. 12 1195 (2000).CrossRefGoogle Scholar
8Izaki, M. and Omi, T.: J. Electrochem. Soc. 143 L53 (1996).CrossRefGoogle Scholar
9Thanos, J.C.G. and Wagner, D.W.: J. Electroanal. Chem. 182 25 (1985).CrossRefGoogle Scholar
10Gal-Or, L., Silberman, I. and Chaim, R.: J. Electrochem. Soc. 138 1939 (1991).CrossRefGoogle Scholar
11Li, F-B., Newman, R.C. and Thompson, G.E.: Electrochim. Acta 42 2455 (1997).CrossRefGoogle Scholar
12Dong, S. and Wang, B.: J. Electroanal. Chem. 370 141 (1994).CrossRefGoogle Scholar
13Liu, S., Zhang, Q., Wang, E. and Dong, S.: Electrochem. Comm. 1 365 (1999).CrossRefGoogle Scholar
14Guerfi, A. and Dao, L.H.: J. Electrochem. Soc. 136 2435 (1989).CrossRefGoogle Scholar
15Guerfi, A., Paynter, R.W. and Dao, L.H.: J. Electrochem. Soc. 142 3457 (1995).CrossRefGoogle Scholar
16Yamanaka, K.: Jpn. J. Appl. Phys. 26 1884 (1987).CrossRefGoogle Scholar
17Shen, P.K. and Tseung, A.C.C.: J. Mater. Chem. 2 1141 (1992).CrossRefGoogle Scholar
18Shen, P.K., Syed-Bokhari, J. and Tseung, A.C.C.: J. Electrochem. Soc. 138 2778 (1991).CrossRefGoogle Scholar
19Muelenkamp, E.A.: J. Electrochem. Soc. 44 1664 (1997).CrossRefGoogle Scholar
20Hagenmuller, P. in Comprehensive Inorganic Chemistry, edited by Bailar, J.C. Jr., Emeleus, H.J., Nyholm, R., and Trotman-Dickenson, A.F. (Pergamon Press, Oxford, 1973), p. 541.Google Scholar
21Connor, J.A. and Ebsworth, E.A.V. in Advances in Inorganic Chemistry and Radiochemistry, edited by Emeleus, H.J. and Sharpe, A.J. (Academic Press, New York, 1964), p. 279.Google Scholar
22Zach, M.P., Inazu, K., Ng, K.H., Hemminger, J.C. and Penner, R.M.: Chem. Mater. 14 3206 (2002).CrossRefGoogle Scholar
23Daolio, S., Fleischmann, M. and Pletcher, D.: J. Electroanal. Chem. 130 269 (1981).CrossRefGoogle Scholar
24McEvoy, T.M. and Stevenson, K.J.: Anal. Chim. Acta 456 39 (2003).CrossRefGoogle Scholar
25 FITT 1.2, written by Hyun-Jo Kim, Photoelectron Spectroscopy Lab, Seoul National University, (2000). FITT uses a Levenberg-Marquardt method for XPS curve fitting.Google Scholar
26Sauerbrey, G.: Z. Phys. 155 206 (1959).CrossRefGoogle Scholar
27Bruckenstein, S. and Swathirajan, S.: Electrochim. Acta. 30 851 (1985).CrossRefGoogle Scholar
28Tytko, K.H. and Glemser, O. in Advances in Inorganic Chemistry and Radiochemistry, edited by Emeleus, H.J. and Sharpe, A.J. (Academic Press, New York, 1976), p. 239.Google Scholar
29Dickman, M.H. and Pope, M.T.: Chem. Rev. 94 569 (1994).CrossRefGoogle Scholar
30Pope, M.T.Heteropoly and Isopoly Oxometalates, (Springer-Verlag, Berlin, 1983).CrossRefGoogle Scholar
31Tytko, K-H. and Gras, D., in Gmelin Handbook of Inorganic Chemistry, Molybdenum Supplement, Vol. B 3b, 8th ed., edited by Katscher, H. and Schroder, F. (Springer-Verlag, New York, 1989).Google Scholar
32Tytko, V.K.H., Baethe, G., Hirschfeld, E.R., Mahmke, K. and Stellhorn, D.: Z. Anorg. Allg. Chem. 503 43 (1983).CrossRefGoogle Scholar
33Richardson, E.: J. Less-Common Met. 2 360 (1960).CrossRefGoogle Scholar
34Brown, P.L., Shying, M.E. and Sylva, R.N.: J. Chem. Soc. Dalton Trans. 9 2149 (1987).CrossRefGoogle Scholar
35Howarth, O.W., Petterson, L. and Andersson, I. in Polyoxometalate Chemistry from Topology via Self-Assembly to Applications, edited by Pope, M.T. and Muller, A. (Kluwer, Dordrecht, 2001), p. 145.Google Scholar
36Yamanaka, K.: Jpn. J. App. Phys. 26 1884 (1987).CrossRefGoogle Scholar
37Braun, P.V. and Wiltzius, P.: Nature 402 603 (1999).CrossRefGoogle Scholar
38 National Institute of Standards and Technology X-Ray Photoelectron Database, Web Version 3.3, (2000).Google Scholar
39Colton, R.J., Guzman, A.M. and Rabalais, J.W.: Acc. Chem. Res. 11 170 (1978).CrossRefGoogle Scholar
40Buckley, R.I. and Clark, R.J.H.: Coor. Chem. Rev. 65 167 (1985).CrossRefGoogle Scholar
41Mestl, G., Verbruggen, N.F.D. and Knozinger, H.: Langmuir 11 3035 (1995).CrossRefGoogle Scholar
42Buttry, D.A. and Ward, M.D.: Chem. Rev. 92 1355 (1992).CrossRefGoogle Scholar
43Conway, B.E., Birss, V. and Wojtowicz, J.: J. Power Sources 66 1 (1997).CrossRefGoogle Scholar
44Pyun, S-I., Kim, K-H. and Han, J-N.: J. Power Sources 91 92 (2000).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Elucidation of the electrodeposition mechanism of molybdenum oxide from iso- and peroxo-polymolybdate solutions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Elucidation of the electrodeposition mechanism of molybdenum oxide from iso- and peroxo-polymolybdate solutions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Elucidation of the electrodeposition mechanism of molybdenum oxide from iso- and peroxo-polymolybdate solutions
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *