Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-db5sh Total loading time: 0.215 Render date: 2021-06-18T07:05:21.494Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Effusion of hydrogen from proton implanted ceramic YBa2Cu3O7−x during annealing in oxygen atmosphere

Published online by Cambridge University Press:  31 January 2011

Katsuhiro Yokota
Affiliation:
Faculty of Engineering, Kansai University, Suita, Osaka 564, Japan
Kazuhiro Hatanaka
Affiliation:
Faculty of Engineering, Kansai University, Suita, Osaka 564, Japan
Takeshi Kura
Affiliation:
Faculty of Engineering, Kansai University, Suita, Osaka 564, Japan
Saichi Katayama
Affiliation:
Faculty of Engineering, Kansai University, Suita, Osaka 564, Japan
Mitsukazu Ochi
Affiliation:
Faculty of Engineering, Kansai University, Suita, Osaka 564, Japan
Mitsuaki Murakami
Affiliation:
Faculty of Engineering, Kansai University, Suita, Osaka 564, Japan
Akiyoshi Chayahara
Affiliation:
Government Industrial Research Institute Osaka, Ikeda, Osaka 563, Japan
Mamoru Satho
Affiliation:
Government Industrial Research Institute Osaka, Ikeda, Osaka 563, Japan
Get access

Abstract

Hydrogen implanted into ceramic YBa2Cu3O7−x (YBCO) with a dose of 1 × 1017 H+ cm−2 started to effuse as molecular hydrogen from the YBCO to atmosphere at a temperature of 200 °C, effuse predominantly as water by reacting with oxygen at temperatures of 300–700 °C, and again effuse as molecular hydrogen at temperatures above 800 °C. The improvement of the superconducting properties of the proton implanted YBCO occurred at annealing temperatures for which implanted hydrogen effused predominantly as water by reacting with oxygen.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Reilly, J. J., Suenaga, M., Johnson, J. R., Thompson, P., and Moodenbaugh, A. R., Phys. Rev. B 36, 5694 (1987).CrossRefGoogle Scholar
2.Xiong, G. C., Li, H. C., Linker, G., and Meyer, O., Phys. Rev. B 38, 240 (1988).CrossRefGoogle Scholar
3.Yokota, K., Kura, T., Katayama, S., Chayahara, A., and Satho, M., Nucl. Instrum. Methods B59/60, 1431 (1991).Google Scholar
4.Kwok, W. K., Crabtree, G. W., Umezawa, A., Veal, B. W., Jorgensen, J. D., Malik, S. K., Nowicki, L. J., Paulikas, A. P., and Nunez, L., Phys. Rev. B 37, 106 (1988).CrossRefGoogle Scholar
5.Harwell, B. S., Ion Implantation Range Data for Silicon and Germanium Device Technologies (Learned Information, Oxford, 1977), Chap. 2.Google Scholar
6.Vedeneyev, V. I., Gurvich, L. V., Kondrat'yen, V. N., Medvedev, V. A., and Frankevich, Ye. L., Bond Energies Ionization Potentials and Electron Affinities (Edward Arnold, London, 1966), Table I.Google Scholar
7.Lonsdale, K., International Tables for X-ray Crystallography (The Kynoch Press, Birmingham, 1974), Vol. 3.Google Scholar
8. Powder Diffraction File (JCPDS International Center for Diffraction Data, Swarthmore, PA, 1988), 381434.Google Scholar
9.Xiong, G. C., Li, H. C., Linker, G., and Meyer, O., Phys. Rev. B 38, 240 (1988).CrossRefGoogle Scholar
10.Meyer, O., Egner, B., Geerk, J., Gerber, R., Linker, G., Weschenfelder, F., Xi, X. X., and Xiong, G. C., Nucl. Instrum. Methods B 37/38, 917 (1989).CrossRefGoogle Scholar
11.Yoshida, A., Tamura, H., Morohashi, S., and Hasuo, S., Appl. Phys. Lett. 53, 811 (1988).CrossRefGoogle Scholar
12.Sugai, S., Phys. Rev. 36, 7133 (1987).CrossRefGoogle Scholar
13.Yokota, K., Kura, T., Ochi, M., and Katayama, S., Jpn. J. Appl. Phys. 29, L1425 (1990).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effusion of hydrogen from proton implanted ceramic YBa2Cu3O7−x during annealing in oxygen atmosphere
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effusion of hydrogen from proton implanted ceramic YBa2Cu3O7−x during annealing in oxygen atmosphere
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effusion of hydrogen from proton implanted ceramic YBa2Cu3O7−x during annealing in oxygen atmosphere
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *