Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-9th95 Total loading time: 0.31 Render date: 2022-12-02T21:23:45.646Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Effects of substrate crystallinity on the on-state resistance of 6H–SiC photoconductive switches

Published online by Cambridge University Press:  15 August 2012

Wei Huang
Affiliation:
Laboratory of Silicon Carbide, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
Shao-Hui Chang
Affiliation:
Laboratory of Silicon Carbide, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
Xue-Chao Liu*
Affiliation:
Laboratory of Silicon Carbide, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
Biao Shi
Affiliation:
Laboratory of Silicon Carbide, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
Tian-Yu Zhou
Affiliation:
Laboratory of Silicon Carbide, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
Xi Liu
Affiliation:
Laboratory of Silicon Carbide, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
Cheng-Fen Yan
Affiliation:
Laboratory of Silicon Carbide, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
Yan-Qing Zhen
Affiliation:
Laboratory of Silicon Carbide, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
Jian-Hua Yang
Affiliation:
Laboratory of Silicon Carbide, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
Er-Wei Shi
Affiliation:
Laboratory of Silicon Carbide, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
*
a)Address all correspondence to this author. e-mail: icerain@mail.sic.ac.cn
Get access

Abstract

In this work, the relationship between the substrate crystallinity and the on-state resistances of silicon carbide (SiC) photoconductive semiconductor switches (PCSSs) was investigated. PCSSs with different channel lengths were fabricated on semi insulating 6H–SiC having different crystal qualities. A method was introduced for determining the photoconductive capacity of the SiC PCSSs. The experimental data suggest that the photoconductive capacity decreases sharply with the degradation of the full width at half maximum of the rocking curve of the 6H–SiC substrates. It is found that increasing the carrier mobility is a key factor for reducing the on-state resistance of the 6H–SiC PCSSs. Moreover, the results in this work present reference for the selection of 6H–SiC substrates for the fabrication of PCSSs and some other photoelectric devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Treu, M., Rupp, R., Blaschitz, P., and Hilsenbeck, J.: Commercial SiC device processing: Status and requirements with respect to SiC-based power devices. Superlattices Microstruct. 40, 380387 (2006).CrossRefGoogle Scholar
Zhang, Q., Madangarli, V., and Sudarshan, T.S.: SiC planar MOS-Schottky diode: A high voltage Schottky diode with low leakage current. Solid State Electron. 45, 10851089 (2001).CrossRefGoogle Scholar
Hjelmgren, H., Andersson, K., Eriksson, J., Nilsson, P.A., Sudow, M., and Rorsman, N.: Electrothermal simulations of a microwave 4H-SiC MESFET on high purity semi insulating substrate. Solid State Electron. 51, 11441152 (2007).CrossRefGoogle Scholar
Zhu, K., Johnstone, D., Leach, J., Fu, Y., Morkoc, H., Li, G., and Ganguly, B.: High-power photoconductive switches of 4H SiC with Si3N4 passivation and n(+)-GaN subcontact. Superlattices Microstruct. 41, 264270 (2007).CrossRefGoogle Scholar
James, C., Hettler, C., Dickens, J., and Neuber, A.: Compact silicon carbide switch for high voltage operation. IEEE International Power Modulators and High-Voltage Conference Proceedings of the 2008 1720 (2008).CrossRefGoogle Scholar
Kelkar, K.S., Islam, N.E., Kirawanich, P., Fessler, C.M., and Nunnally, W.C.: On-state characteristics of a high-power photoconductive switch fabricated from compensated 6-H silicon carbide. IEEE Trans. Plasma Sci. 36, 287292 (2008).CrossRefGoogle Scholar
Loubriel, G.M., Zutavern, F.J., Baca, A.G., Hjalmarson, P.P., Plut, T.A., Helgeson, W.D., Omalley, M.W., Ruebush, M.H., and Brown, D.J.: Photoconductive semiconductor switches. IEEE Trans. Plasma Sci. 25, 124130 (1997).CrossRefGoogle Scholar
Auston, D.H.: Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 26, 101103 (1975).CrossRefGoogle Scholar
Chi, H.L.: Picosecond optoelectronic switching in GaAs. Appl. Phys. Lett. 30, 8486 (1977).Google Scholar
Shi, W. and Tian, L.Q.: Mechanism analysis of periodicity and weakening surge of GaAs photoconductive semiconductor switches. Appl. Phys. Lett. 89, 3 (2006).CrossRefGoogle Scholar
Saddow, S.E., Cho, P.S., Goldhar, J., Lee, C.H., and Neudeck, P.G.: Subnanosecond photovoltaic response in 6H–SiC. Appl. Phys. Lett. 65, 33593361 (1994).CrossRefGoogle Scholar
Cho, P.S., Goldhar, J., Lee, C.H., Saddow, S.E., and Neudeck, P.: Photoconductive and photovoltaic response of high-dark-resistivity 6h-Sic devices. J. Appl. Phys. 77, 15911599 (1995).CrossRefGoogle Scholar
Sudarshan, T.S., Gradinaru, G., Korony, G., Mitchel, W., and Hopkins, R.H.: High-field effects in high-resistivity silicon-carbide in lateral configurations. Appl. Phys. Lett. 67, 34353437 (1995).CrossRefGoogle Scholar
Dogan, S., Teke, A., Huang, D., Morkoc, H., Roberts, C.B., Parish, J., Ganguly, B., Smith, M., Myers, R.E., and Saddow, S.E.: 4H-SiC photoconductive switching devices for use in high-power applications. Appl. Phys. Lett. 82, 31073109 (2003).CrossRefGoogle Scholar
Jenny, J.R., Malta, D.P., Muller, S.G., Powell, A.R., Tsvetkov, V.F., Hobgood, H.M., Glass, R.C., and Carter, C.H.: High-purity semi insulating 4H-SiC for microwave device applications. J. Electron. Mater. 32, 432436 (2003).CrossRefGoogle Scholar
Kelkar, K.S., Islam, N.E., Fessler, C.M., and Nunnally, W.C.: Silicon carbide photoconductive switch for high-power, linear-mode operations through sub-band-gap triggering. J. Appl. Phys. 98, 93102–93102-6 (2005).CrossRefGoogle Scholar
Zhu, K., Dogan, S., Moon, Y.T., Leach, J., Yun, F., Johnstone, D., Morkoc, H., Li, G., and Ganguly, B.: Effect of n(+)-GaN subcontact layer on 4H-SiC high-power photoconductive switch. Appl. Phys. Lett. 86, 261108–61108 (2005).CrossRefGoogle Scholar
Mitchel, W.C., Perrin, R., Goldstein, J., Saxler, A., Roth, M., Smith, S.R., Solomon, J.S., and Evwaraye, A.O.: Fermi level control and deep levels in semi insulating 4H–SiC. J. Appl. Phys. 86, 50405044 (1999).CrossRefGoogle Scholar
Sridhara, S.G., Eperjesi, T.J., Devaty, R.P., and Choyk, W.J.: Penetration depths in the ultraviolet for 4H, 6H and 3C silicon carbide at seven common laser-pumping wavelengths. Mater. Sci. Eng., B 61, 229233 (1999).CrossRefGoogle Scholar
Huang, W., Chen, Z.Z., Chen, B.Y., Li, Z.Z., Chang, S.H., Yan, C.F., and Shi, E.W.: Room-temperature phonon replica in band-to-band transition of 6H-SiC analyzed using transmission spectrums. Jpn. J. Appl. Phys. 48, 100204 (2009).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of substrate crystallinity on the on-state resistance of 6H–SiC photoconductive switches
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effects of substrate crystallinity on the on-state resistance of 6H–SiC photoconductive switches
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effects of substrate crystallinity on the on-state resistance of 6H–SiC photoconductive switches
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *