Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-rn2sj Total loading time: 0.308 Render date: 2022-08-19T00:45:14.022Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The effects of capping barrier layers on the compositional and structural variations of integrated Pb(Zr, Ti)O3 ferroelectric capacitor having the dimension 3 × 3 μm2

Published online by Cambridge University Press:  31 January 2011

Cheol Seong Hwang*
Affiliation:
School of Materials Science and Engineering, Seoul National University, San #56-1, Shillim-Dong, Kwanak-Ku, Seoul, 151-742, Korea
Ju Cheol Shin
Affiliation:
School of Materials Science and Engineering, Seoul National University, San #56-1, Shillim-Dong, Kwanak-Ku, Seoul, 151-742, Korea
Jae Bin Lee
Affiliation:
School of Materials Science and Engineering, Seoul National University, San #56-1, Shillim-Dong, Kwanak-Ku, Seoul, 151-742, Korea
Jae-hoo Park
Affiliation:
School of Materials Science and Engineering, Seoul National University, San #56-1, Shillim-Dong, Kwanak-Ku, Seoul, 151-742, Korea
Young Jin Cho
Affiliation:
School of Materials Science and Engineering, Seoul National University, San #56-1, Shillim-Dong, Kwanak-Ku, Seoul, 151-742, Korea
Hyeong Joon Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, San #56-1, Shillim-Dong, Kwanak-Ku, Seoul, 151-742, Korea
Sang Yung Lee
Affiliation:
Semiconductor R&D Center, Samsung Electronics Company, San #24, Nongseo-Lee, Kiheung-Eup, Yongin-Si, Kyungki-Do, 463-060, Korea
Soon Oh Park
Affiliation:
Semiconductor R&D Center, Samsung Electronics Company, San #24, Nongseo-Lee, Kiheung-Eup, Yongin-Si, Kyungki-Do, 463-060, Korea
*
a)Address all correspondence to this author. e-mail: cheolsh@plaza.snu.ac.kr
Get access

Abstract

Structure and composition of the ferroelectric Pb(Zr, Ti)O3 layers in a capacitor of the ferroelectric random-access memory (FeRAM) device having a density of 64 k were investigated by transmission electron microscopy (TEM) together with the energy-dispersive spectroscopy (EDS) technique. The 250 nm thick PZT layer derived by the sol-gel route showed a 2–3% Pb-deficient, 3–4% Ti-deficient, and 5–7% Zr-excess composition at the top electrode interface compared to the bulk composition when they were as-fabricated. The local compositional nonuniformity became more critical as the integration process proceeded, which seriously degraded the ferroelectric hysteresis and the device yield. The major cause of the compositional variation was the outward diffusion of Pb through the capping barrier TiO2 layer during annealing at 650 °C. The AlN capping barrier layer was also not effective in suppressing the diffusion of Pb. However, the Al2O3/TiO2 double capping layer was very effective in suppressing the outward diffusion of Pb, and excellent ferroelectric characteristic was expected.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chung, D.J., Lee, S. Y., Koo, B.J., Hwang, Y. S., Shin, D. W., Lee, J. W., Chun, Y. S., Shin, S. H., Lee, M.H., Park, H. B., Lee, S. I., Kim, K., and Lee, J. G., Symp. VLSI Tech. Digest of Tech. Papers (Honolulu, 1998), p. 122.Google Scholar
2.Tanabe, N., Kobayashi, S., Miwa, T., Amanuma, K., Mori, H., Inoue, N., Takeuchi, T., Saitoh, S., Saitoh, S., Hayashi, Y., Yamada, J., Koike, H., Hada, H., and Kunio, T., Symp. VLSI Tech. Digest of Tech. Papers (Honolulu, 1998), p. 124.Google Scholar
3.Kachi, T., Shoji, K., Yamashita, H., Kisu, T., Torii, K., Kumihashi, T., Fujisaki, Y., and Yokoyama, N., Symp. VLSI Tech. Digest of Tech. Papers (Honolulu, 1998), p. 126.Google Scholar
4.Chung, D.J., Kang, N.S., Lee, S. Y., Koo, B. J., Lee, J. W., Park, J. H., Chun, Y.S., Lee, M.H., Jeon, B. G., Lee, S.I., Shim, T. E., and Hwang, C.G., Symp. VLSI Tech. Digest of Tech. Papers (Kyoto, 1997), p. 139.Google Scholar
5.Boyer, L. L., Velasquez, N., and Evans, J. T. Jr, Jpn. J. Appl. Phys. 36, 5799 (1997).CrossRefGoogle Scholar
6.Hintermaier, F., Hendrix, B., Desrochers, D., Roeder, J., Dehm, C., Fritsch, E., Hönlein, W., Mazuré, C., Nagel, N., Thwaite, P., Symp. VLSI Tech. Digest of Tech. Papers (Honolulu, 1998), p. 56.Google Scholar
7.Yang, H-M., Luo, J-S., and Lin, W-T., J. Mater. Res. 12, 1145 (1997).CrossRefGoogle Scholar
8.Nakamura, T., Nakao, Y., Kamisawa, A., and Takasu, H., Jpn. J. Appl. Phys. 34, 5184 (1995).CrossRefGoogle Scholar
9.Sandashivan, S., Aggarwal, S., Song, T.K., Ramesh, R., Evans, J.T. Jr, Tuttle, B. A., Warren, W. L., and Dimos, D., J. Appl. Phys. 83, 2165 (1998).CrossRefGoogle Scholar
10.Lee, J., Choi, C.H., Park, B. H., Noh, T.W., and Lee, J.K., Appl. Phys. Lett. 72, 3380 (1998).CrossRefGoogle Scholar
11.Moulson, A.J. and Herbert, J. M., in Electroceramics (Chapman and Hall, London, 1990), p. 283.Google Scholar
12.Scott, J. F., Integ. Ferro. 9, 1 (1995).CrossRefGoogle Scholar
13.Hwang, C.S. and Kim, H. J., J. Am. Ceram. Soc. 78, 337 (1995).CrossRefGoogle Scholar
14.Park, I.S., Kim, Y.K., Lee, S.M., Chung, J. H., Kang, S.B., Yoo, C.Y., Lee, S. I., and Lee, M. Y., Proc. Inter. Electr. Device Meet. (1997), p. 617.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The effects of capping barrier layers on the compositional and structural variations of integrated Pb(Zr, Ti)O3 ferroelectric capacitor having the dimension 3 × 3 μm2
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The effects of capping barrier layers on the compositional and structural variations of integrated Pb(Zr, Ti)O3 ferroelectric capacitor having the dimension 3 × 3 μm2
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The effects of capping barrier layers on the compositional and structural variations of integrated Pb(Zr, Ti)O3 ferroelectric capacitor having the dimension 3 × 3 μm2
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *