Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-c6lpx Total loading time: 0.263 Render date: 2022-11-27T12:02:41.523Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Effect of oxygen gas on polycarbonate surface in keV energy Ar+ ion irradiation

Published online by Cambridge University Press:  26 July 2012

Jun-Sik Cho
Affiliation:
Division of Ceramics, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130–650, Korea
Won-Kook Choi
Affiliation:
Division of Ceramics, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130–650, Korea
Hyung-Jin Jung
Affiliation:
Division of Ceramics, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130–650, Korea
Seok-Keun Koh
Affiliation:
Division of Ceramics, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130–650, Korea
Ki Hyun Yoon
Affiliation:
Department of Ceramic Engineering, Yonsei University, Seoul 120–701, Korea
Get access

Abstract

Ar+1 ion irradiation on a polycarbonate (PC) surface was carried out in an oxygen environment in order to investigate the effects of surface chemical reaction, surface morphology, and surface energy on wettability of PC. Doses of Ar+ ion were changed from 5 × 1014 to 5 × 1016 at 1 keV ion beam energy by a broad ion beam source. Contact angle of PC was not reduced much by Ar+ ion irradiation without flowing oxygen gas, but decreased significantly as Ar+ ion was irradiated with flowing 4 sccm (ml/min) oxygen gas and showed a minimum of 12° to water and 5° to formamide. A newly formed polar group was observed on the modified PC surface by Ar+ ion irradiation with flowing oxygen gas, and it increased the PC surface energy. On the basis of x-ray photoelectron spectroscopy analysis, the formed polar group was identified as a hydrophilic bond (carbonyl group). In atomic force microscopy (AFM) study, the root mean square of surface roughness was changed from 14 Å to 22–27 Å by Ar+ ion irradiation without flowing oxygen gas and 26–30 Å by Ar+ ion irradiation with flowing 4 sccm oxygen gas. It was found that wettability of the modified PC surface was not greatly dependent on the surface morphology, but on an amount of hydrophilic group formed on the surface in the ion beam process.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Livi, R. P., Nucl. Instrum. Methods B10/11, 545 (1985).CrossRefGoogle Scholar
2.Jacobson, S., Johnson, B., and Sundqvist, B., Thin Solid Films 107, 89 (1983).CrossRefGoogle Scholar
3.Griffith, J. E., Qiu, Y., and Tombrello, T. A., Nucl. Instrum. Methods 198, 607 (1982).CrossRefGoogle Scholar
4.Tombrello, T. A., Nucl. Instrum. Methods 218, 679 (1983).CrossRefGoogle Scholar
5.Flitsch, R. and Shi, D. Y., J. Vac. Sci. Technol. A 8 (3), 2376 (1990).CrossRefGoogle Scholar
6.Wie, C. R., Shi, C. R., Mendenshall, M. H., Livi, R. P., Vreeland, T., Jr., and Tombrello, T. A., Nucl. Instrum. Methods B9, 20 (1985).CrossRefGoogle Scholar
7.Mitchell, I. V., Williams, J. S., Smith, P., and Elliman, R. G., Appl. Phys. Lett. 44 (2), 193 (1984).CrossRefGoogle Scholar
8.Mitchell, I. V., Nyberg, G., and Elliman, R. G., Appl. Phys. Lett. 45 (2), 137 (1984).CrossRefGoogle Scholar
9.Wintersgrill, M. C., Nucl. Instrum. Methods B1, 595 (1984).CrossRefGoogle Scholar
10.Puglisi, O., Licciardello, A., Calcagno, L., and Foti, G., Nucl. Instrum. Methods B19/20, 865 (1987).CrossRefGoogle Scholar
11.Suzuki, Y., Kusakabe, M., Iwaki, M., and Suzuki, M., Nucl. Instrum. Methods B32, 120 (1988).CrossRefGoogle Scholar
12.Torrisi, L., Calcagno, L., and Foti, A. M., Nucl. Instrum. Methods B32, 142 (1988).CrossRefGoogle Scholar
13.Fakes, D. W., Newton, J. M., Watts, J. F., and Edgell, M. J., Surf. Int. Anal. 10, 416 (1987).CrossRefGoogle Scholar
14.Wrobei, A. M., Kryszewski, M., Rakowski, W., Okoniewski, M., and Kubacki, Z., Polymer 19, 908 (1978).CrossRefGoogle Scholar
15.Koh, S. K., Song, S. K., Choi, W. K., Jung, H-J., and Han, S. N., Ungyong Mulli. 8 (2), 193 (1995).Google Scholar
16.Koh, S. K., Choi, W. K., Cho, J. S., Song, S. K., and Jung, H-J., in Beam Solid Interactions for Materials Synthesis and Characterization, edited by Jacobson, D. C., Luzzi, D. E., Heinz, T. F., and Iwaki, M. (Mater. Res. Soc. Symp. Proc. 354, Pittsburgh, PA, 1994), pp. 345350.Google Scholar
17.Koh, S-K., Song, S-K., Choi, W-K., Jung, H-J., and Han, S-N., J. Mater. Res. 10, 2390 (1995).CrossRefGoogle Scholar
18.Choi, W. K., Koh, S. K., and Jung, H-J., J. Vac. Sci. Technol. A 14 (4), 2366 (1996).CrossRefGoogle Scholar
19.Fowkes, F. M., Ind. Eng. Chem. 56, 40 (1964).CrossRefGoogle Scholar
20.Owens, D. K. and Wendt, R. C., J. Appl. Polymer Sci. 13, 1741 (1969).CrossRefGoogle Scholar
21.Youxian, D., Griesser, H. J., Mau, A. W. H., and Schmit, R., Polymer 32 (6), 1126 (1991).CrossRefGoogle Scholar
22.Briggs, D., Rance, D. G., Kendall, C. R., and Blythe, A. R., Polymer 21, 895 (1980).CrossRefGoogle Scholar

REFERENCES

1.Livi, R. P., Nucl. Instrum. Methods B10/11, 545 (1985).CrossRefGoogle Scholar
2.Jacobson, S., Johnson, B., and Sundqvist, B., Thin Solid Films 107, 89 (1983).CrossRefGoogle Scholar
3.Griffith, J. E., Qiu, Y., and Tombrello, T. A., Nucl. Instrum. Methods 198, 607 (1982).CrossRefGoogle Scholar
4.Tombrello, T. A., Nucl. Instrum. Methods 218, 679 (1983).CrossRefGoogle Scholar
5.Flitsch, R. and Shi, D. Y., J. Vac. Sci. Technol. A 8 (3), 2376 (1990).CrossRefGoogle Scholar
6.Wie, C. R., Shi, C. R., Mendenshall, M. H., Livi, R. P., Vreeland, T., Jr., and Tombrello, T. A., Nucl. Instrum. Methods B9, 20 (1985).CrossRefGoogle Scholar
7.Mitchell, I. V., Williams, J. S., Smith, P., and Elliman, R. G., Appl. Phys. Lett. 44 (2), 193 (1984).CrossRefGoogle Scholar
8.Mitchell, I. V., Nyberg, G., and Elliman, R. G., Appl. Phys. Lett. 45 (2), 137 (1984).CrossRefGoogle Scholar
9.Wintersgrill, M. C., Nucl. Instrum. Methods B1, 595 (1984).CrossRefGoogle Scholar
10.Puglisi, O., Licciardello, A., Calcagno, L., and Foti, G., Nucl. Instrum. Methods B19/20, 865 (1987).CrossRefGoogle Scholar
11.Suzuki, Y., Kusakabe, M., Iwaki, M., and Suzuki, M., Nucl. Instrum. Methods B32, 120 (1988).CrossRefGoogle Scholar
12.Torrisi, L., Calcagno, L., and Foti, A. M., Nucl. Instrum. Methods B32, 142 (1988).CrossRefGoogle Scholar
13.Fakes, D. W., Newton, J. M., Watts, J. F., and Edgell, M. J., Surf. Int. Anal. 10, 416 (1987).CrossRefGoogle Scholar
14.Wrobei, A. M., Kryszewski, M., Rakowski, W., Okoniewski, M., and Kubacki, Z., Polymer 19, 908 (1978).CrossRefGoogle Scholar
15.Koh, S. K., Song, S. K., Choi, W. K., Jung, H-J., and Han, S. N., Ungyong Mulli. 8 (2), 193 (1995).Google Scholar
16.Koh, S. K., Choi, W. K., Cho, J. S., Song, S. K., and Jung, H-J., in Beam Solid Interactions for Materials Synthesis and Characterization, edited by Jacobson, D. C., Luzzi, D. E., Heinz, T. F., and Iwaki, M. (Mater. Res. Soc. Symp. Proc. 354, Pittsburgh, PA, 1994), pp. 345350.Google Scholar
17.Koh, S-K., Song, S-K., Choi, W-K., Jung, H-J., and Han, S-N., J. Mater. Res. 10, 2390 (1995).CrossRefGoogle Scholar
18.Choi, W. K., Koh, S. K., and Jung, H-J., J. Vac. Sci. Technol. A 14 (4), 2366 (1996).CrossRefGoogle Scholar
19.Fowkes, F. M., Ind. Eng. Chem. 56, 40 (1964).CrossRefGoogle Scholar
20.Owens, D. K. and Wendt, R. C., J. Appl. Polymer Sci. 13, 1741 (1969).CrossRefGoogle Scholar
21.Youxian, D., Griesser, H. J., Mau, A. W. H., and Schmit, R., Polymer 32 (6), 1126 (1991).CrossRefGoogle Scholar
22.Briggs, D., Rance, D. G., Kendall, C. R., and Blythe, A. R., Polymer 21, 895 (1980).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of oxygen gas on polycarbonate surface in keV energy Ar+ ion irradiation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effect of oxygen gas on polycarbonate surface in keV energy Ar+ ion irradiation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effect of oxygen gas on polycarbonate surface in keV energy Ar+ ion irradiation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *