Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-8fhp6 Total loading time: 0.669 Render date: 2021-09-17T22:34:21.120Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Does the shear-lag model apply to random fiber networks?

Published online by Cambridge University Press:  31 January 2011

V. I. Räisänen
Affiliation:
CSC–Center for Scientific Computing, P.O. Box 405, FIN-02101 Espoo, Finland
M. J. Alava
Affiliation:
Helsinki University of Technology, Laboratory of Physics, FIN-02150 Espoo, Finland
K. J. Niskanen
Affiliation:
KCL Paper Science Centre, P.O. Box 70, FIN-02151 Espoo, Finland
R. M. Nieminen
Affiliation:
CSC–Center for Scientific Computing, P.O. Box 405, FIN-02101 Espoo, Finland and Helsinki University of Technology, Laboratory of Physics, FIN-02150 Espoo, Finland
Get access

Abstract

The shear-lag type model due to Cox (Br. J. Appl. Phys. 3, 72 (1952) is widely used to calculate the deformation properties of fibrous materials such as short fiber composites and random fiber networks. We compare the shear-lag stress transfer mechanism with numerical simulations at small, linearly elastic strains and conclude that the model does not apply to random fiber networks. Most of the axial stress is transferred directly from fiber to fiber rather than through intermediate shear-loaded segments as assumed in the Cox model. The implications for the elastic modulus and strength of random fiber networks are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cox, H. L., Br. J. Appl. Phys. 3, 72 (1952).CrossRefGoogle Scholar
2. For shear-lag models for discontinuous fiber composites, see Robinson, I. M. and Robinson, J. M., J. Mater. Sci. 29, 4663 (1994).CrossRefGoogle Scholar
3.Page, D. H. and Seth, R. S., Tappi J. 63, 113 (1980).Google Scholar
4.Perkins, R. W., in Materials Interactions Relevant to the Pulp Paper and Wood Industries, edited by Caulfield, D. F., Passaretti, J. D., and Sobczynski, S. F. (Materials Research Society, Pittsburgh, PA, 1990), Vol. 197, p. 99, and references therein.Google Scholar
5. See, e.g., Galiolis, C., Composite Sci. Technol. 48, 15 (1994) and references therein.CrossRefGoogle Scholar
6.Andrews, M. C., Day, R. J., Hu, X., and Young, R. J., J. Mater. Sci. Lett. 11, 124 (1992).CrossRefGoogle Scholar
7.Murat, M., Anholt, M., and Wagner, H. D., J. Mater. Res. 7, 3120 (1992).CrossRefGoogle Scholar
8.Monette, L., Anderson, M. P., and Grest, G. S., J. Appl. Phys. 75, 1155 (1994).CrossRefGoogle Scholar
9.Duxbury, P. M., Beale, P. D., and Moukarzel, C., Phys. Rev. B 51 (6), 34763488; C. Moukarzel and P. M. Duxbury, J. Appl. Phys. 76, 4086 (1994).CrossRefGoogle Scholar
10.Blumentritt, B. F., Vu, B. T., and Cooper, S. L., Polym. Eng. Sci. 15, 428 (1975).CrossRefGoogle Scholar
11.Karbhari, M. and Wilkins, D. M., Scripta Metall. Mater. 25, 707 (1991).CrossRefGoogle Scholar
12.Åström, J., Saarinen, S., Niskanen, K., and Kurkijärvi, J., J. Appl. Phys. 75, 2383 (1994).CrossRefGoogle Scholar
13. Cf, e.g., Sahimi, M., Physica A 186, 160 (1992).CrossRefGoogle Scholar
14.Hansen, A., in Statistical models for the fracture of disordered media, edited by Herrmann, H. J. and Roux, S. (North-Holland, Amsterdam, 1990), p. 115 ff.CrossRefGoogle Scholar
15. Version 4.9, Hibbitt, Karlsson & Sorensen Inc., 1080 Main St., Pawtucket, RI 02860.Google Scholar
16. We note here in passing that strictly speaking in our simulations the elastic modulus is not equal to Young's modulus, because the Poisson contraction is prohibited. The relation between the two in 2D is given by [see, e.g., Landau, L. D. and Lifshitz, E. M., Theory of Elasticity (Pergamon Press Ltd., London, 1959), p. 52] where E 0 is the elastic modulus of a network with fixed y-coordinate of the edges perpendicular to external stress, E is the elastic modulus of a network with Poisson contraction, and ν − 0.33 is the Poisson contraction coefficient that can be obtained from the Cox model.Google Scholar
17.Corte, H. and Kallmes, O. J. in The Formation and Structure of Paper, Transactions of the Symposium held at Oxford, edited by Bolam, J. (William Clowes and Sons, Ltd., London, 1962), pp. 1352.Google Scholar
18.Pike, G. E. and Seager, C. H., Phys. Rev. B 10, 1421 (1974).CrossRefGoogle Scholar
19.Jangmalm, A. and Östlund, S., Nordic Pulp and Paper Res. J. 10, 156 (1995).CrossRefGoogle Scholar
20.Heyden, S. and Gustafsson, P. J., A network model for application to cellulose fiber materials, conference paper in 7th Int. Conference on Mechanical Behavior of Materials, May 1995, The Netherlands.Google Scholar
21.Hansen, A., in Statistical models for the fracture of disordered media, edited by Herrmann, H. J. and Roux, S. (Elsevier Science Publishers, North-Holland, 1990), p. 134.Google Scholar
22.Hashin, Z. and Shtrikman, S., J. Mech. Phys. Solids 11, 335 (1963); see also Z. Hashin, J. Appl. Mech. 50, 481 (1983) and references therein and M. Deng and C. T. J. Dodson, Paper: An Engineered Stochastic Structure (Tappi Press, 1994), pp. 204–206 for an application to fiber networks.CrossRefGoogle Scholar
23.Grubb, D. T., Li, Z-F., and Phoenix, S. L., Comp. Sci. Technol. 59, 237 (1995).CrossRefGoogle Scholar
24. See, e.g., Niskanen, , in Products of Papermaking—Transactions of the Tenth Fundamental Research Symposium held at Oxford: September 1993, p. 685, Fig. 32.Google Scholar
25.Hansen, A., in Statistical models for the fracture of disordered media, edited by Herrmann, H. J. and Roux, S. (Elsevier Science Publishers, North-Holland, 1990), p. 149 ff.Google Scholar
26.Duxbury, P. M., Guyer, R. A., and Machta, J., Phys. Rev. B 51, 6711 (1995).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Does the shear-lag model apply to random fiber networks?
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Does the shear-lag model apply to random fiber networks?
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Does the shear-lag model apply to random fiber networks?
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *