Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-lkk24 Total loading time: 0.375 Render date: 2021-09-21T23:24:37.541Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Designing porous silicon-based microparticles as carriers for controlled delivery of mitoxantrone dihydrochloride

Published online by Cambridge University Press:  13 December 2012

Adi Tzur-Balter
Affiliation:
The Inter-Departmental Program of Biotechnology, Technion – Israel Institute of Technology, Haifa 32000, Israel
Anna Rubinski
Affiliation:
Department of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
Ester Segal*
Affiliation:
Department of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel; and The Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
*Corresponding
b)Address all correspondence to this author. e-mail: esegal@tx.technion.ac.il
Get access

Abstract

Porous silicon (PSi) microparticles are designed as tunable delivery carriers for the model anticancer drug, mitoxantrone dihydrochloride (MTX). The surface of the native nanostructured PSi particles was chemically modified by grafting dodecyl and undecanoic acid via thermal hydrosilylation with 1-dodecene and undecylenic acid, respectively. Attenuated total reflectance Fourier transform infrared spectroscopy and nitrogen adsorption–desorption measurements were used to characterize the physiochemical properties of the native and chemically modified PSi microparticles. MTX was loaded by physical adsorption to the native and dodecyl-terminated PSi or by covalent attachment to the undecanoic acid-terminated microparticles. Both drug release profile and the Si erosion of the carriers were significantly affected by the surface chemistry of the PSi microparticles and the drug loading method. The MTX release spans over a period of several hours to weeks, as dictated by these parameters. In vitro cytotoxicity studies on human breast carcinoma (MDA-MB-231) cells revealed that the released MTX maintains its cytotoxic functionality, in comparison to the very low toxicity of all PSi microparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonanno, L.M. and Segal, E.: Nanostructured porous silicon-polymer-based hybrids: From biosensing to drug delivery. Nanomedicine 6(10), 1755 (2011).CrossRefGoogle ScholarPubMed
Bimbo, L.M., Sarparanta, M., Santos, H.A., Airaksinen, A.J., Makila, E., Laaksonen, T., Peltonen, L., Lehto, V.P., Hirvonen, J., and Salonen, J.: Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4(6), 3023 (2010).CrossRefGoogle ScholarPubMed
Salonen, J., Kaukonen, A.M., Hirvonen, J., and Lehto, V.P.: Mesoporous silicon in drug delivery applications. J. Pharm. Sci. 97(2), 632 (2008).CrossRefGoogle ScholarPubMed
Kinnari, P., Makila, E., Heikkila, T., Salonen, J., Hirvonen, J., and Santos, H.A.: Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole. Int. J. Pharm. 414(1–2), 148 (2011).CrossRefGoogle ScholarPubMed
Li, X., John, J.S., Coffer, J.L., Chen, Y., Pinizzotto, R.F., Newey, J., Reeves, C., and Canham, L.T.: Porosified silicon wafer structures impregnated with platinum anti-tumor compounds: Fabrication, characterization, and diffusion studies. Biomed. Microdevices 2, 265 (2000).CrossRefGoogle Scholar
Park, J.H., Gu, L., von Maltzahn, G., Ruoslahti, E., Bhatia, S.N., and Sailor, M.J.: Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8(4), 331 (2009).CrossRefGoogle ScholarPubMed
Perelman, L.A., Pacholski, C., Li, Y.Y., VanNieuwenhze, M.S., and Sailor, M.J.: pH-triggered release of vancomycin from protein-capped porous silicon films. Nanomedicine (Lond) 3(1), 31 (2008).CrossRefGoogle ScholarPubMed
Salonen, J., Laitinen, L., Kaukonen, A.M., Tuura, J., Bjorkqvist, M., Heikkila, T., Vaha-Heikkila, K., Hirvonen, J. and Lehto, V.P.: Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs. J. Controlled Release 108(2–3), 362 (2005).CrossRefGoogle ScholarPubMed
Santos, H.A., Salonen, J., Bimbo, L.M., Lehto, V.P., Peltonen, L., and Hirvonen, J.: Mesoporous materials as controlled drug delivery formulations. J. Drug Delivery Sci. Technol. 21(2), 139 (2011).CrossRefGoogle Scholar
Canham, L.T.: Bioactive silicon structure fabrication through nanoetching techniques. Adv. Mater. 7(12), 1033 (1995).CrossRefGoogle Scholar
McInnes, J.P.S. and Voelcker, N.H.: Silicon-polymer hybrid materials for drug delivery. Future Med. Chem. 1, 1051 (2009).CrossRefGoogle ScholarPubMed
Artzi, N., Oliva, N., Puron, C., Shitreet, S., Artzi, S., Bon Ramos, A., Groothuis, A., Sahagian, G., and Edelman, E.R.: In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging. Nat. Mater. 10, 704 (2011).CrossRefGoogle ScholarPubMed
Godin, B., Gu, J.H., Serda, R.E., Bhavane, R., Tasciotti, E., Chiappini, C., Liu, X.W., Tanaka, T., Decuzzi, P., and Ferrari, M.: Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. J. Biomed. Mater. Res. Part A 94A, 1236 (2010).Google Scholar
Canham, L.T., Stewart, M.P., Buriak, J.M., Reeves, C.L., Anderson, M., Squire, E.K., Allcock, P., and Snow, P.A.: Derivatized porous silicon mirrors: Implantable optical components with slow resorbability. Phys. Status Solidi A 182(1), 521 (2000).3.0.CO;2-7>CrossRefGoogle Scholar
Anglin, E.J., Cheng, L.Y., Freeman, W.R., and Sailor, M.J.: Porous silicon in drug delivery devices and materials. Adv. Drug Delivery Rev. 60(11), 1266 (2008).CrossRefGoogle ScholarPubMed
Doughty, J.C., Kane, E., Cooke, T.G., and McArdle, C.S.: Mitoxantrone and methotrexate chemotherapy with and without mitomycin C in the regional treatment of locally advanced breast cancer. Breast 11(1), 97 (2002).CrossRefGoogle ScholarPubMed
Hagemeister, F., Cabanillas, F., Coleman, M., Gregory, S.A., and Zinzani, P.L.: The role of mitoxantrone in the treatment of indolent lymphomas. The Oncologist 10(2), 150 (2005).CrossRefGoogle ScholarPubMed
Brunauer, S., Emmett, P.H., and Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(309), (1938).CrossRefGoogle Scholar
Gregg, S.J. and Sing, K.S.W.: Adsorption, Surface Area and Porosity (Academic, London, 1982).Google Scholar
Segal, E., Perelman, L.A., Cunin, F., Di Renzo, F., Devoisselle, J.M., Li, Y.Y., and Sailor, M.J.: Confinement of thermoresponsive hydrogels in nanostructured porous silicon dioxide templates. Adv. Funct. Mater. 17(7), 1153 (2007).CrossRefGoogle Scholar
Santos, H.A., Riikonen, J., Salonen, J., Makila, E., Heikkila, T., Laaksonen, T., Peltonen, L., Lehto, V.P., and Hirvonen, J.: In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomater. 6(7), 2721 (2010).CrossRefGoogle ScholarPubMed
Salonen, J. and Lehto, V.P.: Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem. Eng. J. 137, 162 (2008).CrossRefGoogle Scholar
Bimbo, L.M., Mäkiläb, E., Laaksonen, T., Lehto, V-P., Salonen, J., Hirvonen, J., and Santos, H.A.: Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 32(10), 2625 (2011).CrossRefGoogle ScholarPubMed
Chiappini, C., Tasciotti, E., Fakhoury, J.R., Fine, D., Pullan, L., Wang, Y-C., Fu, L., Liu, X., and Ferrari, M.: Tailored porous silicon microparticles: Fabrication and properties. ChemPhysChem 11(5), 1029 (2010).CrossRefGoogle ScholarPubMed
Alvarez, S.D., Derfus, A.M., Schwartz, M.P., Bhatia, S.N., and Sailor, M.J.: The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors. Biomaterials 30(1), 26 (2009).CrossRefGoogle ScholarPubMed
Schwartz, M.P., Cunin, F., Cheung, R.W., and Sailor, M.J.: Chemical modification of silicon surfaces for biological applications. Phys. Status Solidi A 202(8), 1380 (2005).CrossRefGoogle Scholar
Jarvis, K.L., Barnes, T.J., Badalyan, A., Pendleton, P., and Prestidge, C.A.: Impact of thermal oxidation on the adsorptive properties and structure of porous silicon particles. J. Phys. Chem. C, 112, 9717 (2008).CrossRefGoogle Scholar
Anglin, E.J., Schwartz, M.P., Ng, V.P., Perelman, L.A., and Sailor, M.J.: Engineering the chemistry and nanostructure of porous silicon Fabry-Pérot films for loading and release of a steroid. Langmuir 20(25), 11264 (2004).CrossRefGoogle ScholarPubMed
Wu, E.C., Park, J.H., Park, J., Segal, E., Cunin, F., and Sailor, M.J.: Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. ACS Nano 2(11), 2401 (2008).CrossRefGoogle ScholarPubMed
Kovalainen, M., Mönkäre, J., Mäkilä, E., Salonen, J., Lehto, V.P., Herzig, K.H., and Järvinen, H.: Mesoporous silicon (PSi) for sustained peptide delivery: Effect of PSi microparticle surface chemistry on peptide YY3-36 release. Pharm. Res. 29, 837 (2012).CrossRefGoogle ScholarPubMed
Kovalainen, M., Mönkäre, J., Mäkilä, E., Salonen, J., Lehto, V.P., Herzig, K.H., and Järvinen, H.: Mesoporous silicon (PSi) for sustained peptide delivery: Effect of PSi microparticle surface chemistry on peptide YY3-36 release. Pharm. Res. 29, 837 (2012).CrossRefGoogle ScholarPubMed
Wu, E.C., Andrew, J.S., Cheng, L.Y., Freeman, W.R., Pearson, L., and Sailor, M.J.: Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles. Biomaterials 32(7), 1957 (2011).CrossRefGoogle ScholarPubMed
Godin, B., Gu, J.H., Serda, R.E., Bhavane, R., Tasciotti, E., Chiappini, C., Liu, X.W., Tanaka, T., Decuzzi, P., and Ferrari, M.: Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. J. Biomed. Mater. Res. Part A 94A(4), 1236 (2010).Google Scholar
Wise, D.L.: Handbook of Pharmaceutical Controlled Release Technology, 1st ed. (Marcel Dekker Inc., New York, 2000).Google Scholar
Kilian, K.A., Booking, T., Gaus, K., Gal, M., and Gooding, J.J.: Si-C linked oligo(ethylene glycol) layers in silicon-based photonic crystals: Optimization for implantable optical materials. Biomaterials 28(20), 3055 (2007).CrossRefGoogle ScholarPubMed
O’Brien, J. and Pognan, F.: Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Toxicology 164(1–3), 132 (2001).Google Scholar
Cheng, L., Anglin, E., Cunin, F., Kim, D., Sailor, M.J., Falkenstein, I., Tammewar, A., and Freeman, W.R.: Intravitreal properties of porous silicon photonic crystals: A potential self-reporting intraocular drug-delivery vehicle. Br. J. Ophthalmol. 92(5), 705 (2008).CrossRefGoogle ScholarPubMed
Supplementary material: File

Tzur-Balter Supplementary Material

Appendix

Download Tzur-Balter Supplementary Material(File)
File 51 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Designing porous silicon-based microparticles as carriers for controlled delivery of mitoxantrone dihydrochloride
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Designing porous silicon-based microparticles as carriers for controlled delivery of mitoxantrone dihydrochloride
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Designing porous silicon-based microparticles as carriers for controlled delivery of mitoxantrone dihydrochloride
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *