Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-xbgml Total loading time: 0.393 Render date: 2022-08-15T20:09:56.998Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Correlation between nonbridging oxygens and the thermal and optical properties of the TeO2–Li2O–MoO3 glassy system

Published online by Cambridge University Press:  10 August 2015

João Luis Gomes Jr.
Affiliation:
Departamento de Física, Universidade Estadual de Ponta Grossa, 4748 - CEP 84030-900 Ponta Grossa, Paraná, Brazil
Rubyan Lucas Santos Piazzetta
Affiliation:
Departamento de Física, Universidade Estadual de Ponta Grossa, 4748 - CEP 84030-900 Ponta Grossa, Paraná, Brazil
Anderson Gonçalves
Affiliation:
Departamento de Física, Universidade Estadual de Ponta Grossa, 4748 - CEP 84030-900 Ponta Grossa, Paraná, Brazil
Aloisi Somer
Affiliation:
Departamento de Física, Universidade Estadual de Ponta Grossa, 4748 - CEP 84030-900 Ponta Grossa, Paraná, Brazil
Gerson Kniphoff da Cruz
Affiliation:
Departamento de Física, Universidade Estadual de Ponta Grossa, 4748 - CEP 84030-900 Ponta Grossa, Paraná, Brazil
Francisco Carlos Serbena
Affiliation:
Departamento de Física, Universidade Estadual de Ponta Grossa, 4748 - CEP 84030-900 Ponta Grossa, Paraná, Brazil
Andressa Novatski*
Affiliation:
Departamento de Física, Universidade Estadual de Ponta Grossa, 4748 - CEP 84030-900 Ponta Grossa, Paraná, Brazil
*
a)Address all correspondence to this author. e-mail: anovatski2@gmail.com
Get access

Abstract

In this work, the correlation between the number of nonbridging oxygen (NBO) atoms and the thermal and optical properties of TeO2–Li2O–MoO3 glasses was studied. Samples containing (100 − x)TeO2x(Li2O–MoO3) with x = 10, 15, 20, and 25 mol% were investigated by Raman and Fourier transform infrared (FTIR) spectroscopies. From the optical absorption measurements, the band gap energies were determined. The Raman and FTIR results showed that with increasing x, the TeO4 units transform into TeO3+1 units and then into TeO3 units, while the Mo coordination changes from 4 → 6. This transformation corresponds to a decrease in the total number of NBO with increasing x in this glass matrix. The decrease in the NBO is also confirmed by the increase in band gap energies and the decrease in the optical basicity, indicating a more polymerized network with increasing x.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

El-Deen, L.M.S., Salhi, M.S.A., and Elkholy, M.M.: IR and UV spectral studies for rare earths-doped tellurite glasses. J. Alloys Compd. 465(1–2), 333 (2008).CrossRefGoogle Scholar
El-Mallawany, R.: Devitrification and vitrification of tellurite glasses. J. Mater. Sci.: Mater. Electron. 6(1), 1 (1995).Google Scholar
Tatsumisago, M., Lee, S-K., Minami, T., and Kowada, Y.: Raman spectra of TeO2-based glasses and glassy liquids: Local structure change with temperature in relation to fragility of liquid. J. Non-Cryst. Solids 177, 154 (1994).CrossRefGoogle Scholar
Wang, J.S., Vogel, E.M., and Snitzer, E.: Tellurite glass: A new candidate for fiber devices. Opt. Mater. 3(3), 187 (1994).CrossRefGoogle Scholar
Manikandan, N., Ryasnyanskiy, A., and Toulouse, J.: Thermal and optical properties of TeO2–ZnO–BaO glasses. J. Non-Cryst. Solids 358(5), 947 (2012).CrossRefGoogle Scholar
Massera, J., Haldeman, A., Jackson, J., Rivero-Baleine, C., Petit, L., and Richardson, K.: Processing of tellurite-based glass with low OH content. J. Am. Ceram. Soc. 94(1), 130 (2011).CrossRefGoogle Scholar
Wang, J.S., Vogel, E.M., Snitzer, E., Jackel, J.L., da Silva, V.L., and Silberberg, Y.: 1,3 μm emission of neodymium and praseodymium in tellurite-based glasses. J. Non-Cryst. Solids 178, 109 (1994).CrossRefGoogle Scholar
Tanaka, K., Kashima, K., Hirao, K., Soga, N., Mito, A., and Nasu, H.: Second harmonic generation in electrically poled Li2O-Nb2O5-TeO2 glasses. J. Non-Cryst. Solids 185(1–2), 123 (1995).CrossRefGoogle Scholar
Brady, G.W.: Structure of tellurium oxide glass. J. Chem. Phys. 27(1), 300 (1957).CrossRefGoogle Scholar
Bürger, H., Kneipp, K., Hobert, H., Vogel, W., Kozhukharov, V., and Neov, S.: Glass formation, properties and structure of glasses in the TeO2-ZnO system. J. Non-Cryst. Solids 151(1–2), 134 (1992).CrossRefGoogle Scholar
Sekiya, T., Mochida, N., Ohtsuka, A., and Tonokawa, M.: Normal vibrations of two polymorphic forms of TeO2 crystals and assignments of Raman peaks of pure TeO2 glass. J. Ceram. Soc. Jpn. 97(1132), 1435 (1989).CrossRefGoogle Scholar
Hampton, R.N., Hong, W., Saunders, G.A., and El-Mallawany, R.A.: The electrical conductivity of pure and binary TeO2 glasses. J. Non-Cryst. Solids 94(3), 307 (1987).CrossRefGoogle Scholar
Himei, Y., Osaka, A., Nanba, T., and Miura, Y.: Coordination change of Te atoms in binary tellurite glasses. J. Non-Cryst. Solids 177, 164 (1994).CrossRefGoogle Scholar
Bart, J.C.J., Marzi, A., Pignataro, F., Castellan, A., and Giordano, N.: Structural and textural effects of TeO2 added to MoO3. J. Mater. Sci. 10(6), 1029 (1975).CrossRefGoogle Scholar
El-Mallawany, R.: Tellurite glasses: Part 2-anelastic, phase separation, Debye temperature and thermal properties. Mater. Chem. Phys. 60(2), 103 (1999).CrossRefGoogle Scholar
Lim, J.W., Jain, H., Toulouse, J., Marjanovic, S., Sanghera, J.S., Miklos, R., and Aggarwal, I.D.: Structure of alkali tungsten tellurite glasses by X-ray photoelectron spectroscopy. J. Non-Cryst. Solids 349, 60 (2004).CrossRefGoogle Scholar
D'Alessio, L., Pietrucci, F., and Bernasconi, M.: First principles study of the vibrational properties of Li2TeO3. J. Phys. Chem. Solids 68(3), 438 (2007).CrossRefGoogle Scholar
Kundu, R.S., Dhankhar, S., Punia, R., Nanda, K., and Kishore, N.: Bismuth modified physical, structural and optical properties of mid-IR transparent zinc boro-tellurite glasses. J. Alloys Compd. 587, 66 (2014).CrossRefGoogle Scholar
Kozhukharov, V., Marinov, M., Gugov, I., Bürger, H., and Vogel, W.: A new family of tellurife glasses. J. Mater. Sci. 18(5), 1557 (1983).CrossRefGoogle Scholar
Annapurna, K., Chakrabarti, R., and Buddhudu, S.: Absorption and emission spectral analysis of Pr3+: Tellurite glasses. J. Mater. Sci. 42(16), 6755 (2007).CrossRefGoogle Scholar
El-Mallawany, R.: The optical properties of tellurite glasses. J. Appl. Phys. 72(5), 1774 (1992).CrossRefGoogle Scholar
Selvaraj, U. and Rao, K.J.: Characterization studies of molybdophosphate glasses and a model of structural defects. J. Non-Cryst. Solids 72(2–3), 315 (1985).CrossRefGoogle Scholar
Kalampounias, A.G. and Boghosian, S.: Distribution of tellurite polymorphs in the xM2O–(1−x)TeO2 (M = Li, Na, K, Cs, and Rb) binary glasses using Raman spectroscopy. Vib. Spectrosc. 59, 18 (2012).CrossRefGoogle Scholar
Sekiya, T., Mochida, N., Ohtsuka, A., and Tonokawa, M.: Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses. J. Non-Cryst. Solids 144, 128 (1992).CrossRefGoogle Scholar
Tatsumisago, M., Kato, S., Minami, T., and Kowada, Y.: High-temperature structure and crystallization kinetics of Li2O-TeO2 glasses. J. Non-Cryst. Solids 192193, 478 (1995).CrossRefGoogle Scholar
Idalgo, E., Araújo, E.B., Yukimitu, K., Moraes, J.C.S., Reynoso, V.C.S., and Carvalho, C.L.: Effects of the particle size and nucleation temperature on tellurite 20 Li2O–80TeO2 glass crystallization. Mater. Sci. Eng., A 434(1–2), 13 (2006).CrossRefGoogle Scholar
Moraes, J.C.S., Nardi, J.A., Sidel, S.M., Mantovani, B.G., Yukimitu, K., Reynoso, V.C.S., Malmonge, L.F., Ghofraniha, N., Ruocco, G., Andrade, L.H.C., and Lima, S.M.: Relation among optical, thermal and thermo-optical properties and niobium concentration in tellurite glasses. J. Non-Cryst. Solids 356(41–42), 2146 (2010).CrossRefGoogle Scholar
Tanaka, K., Yoko, T., Yamada, H., and Kamiya, K.: Structure and ionic conductivity of LiCl-Li2O-TeO2 glasses. J. Non-Cryst. Solids 103(2–3), 250 (1988).CrossRefGoogle Scholar
Sekiya, T., Mochida, N., and Ogawa, S.: Structural study of MoO3-TeO2 glasses. J. Non-Cryst. Solids 185(1–2), 135 (1995).CrossRefGoogle Scholar
Gayathri Pavani, P., Sadhana, K., and Chandra Mouli, V.: Optical, physical and structural studies of boro-zinc tellurite glasses. Phys. B 406(6–7), 1242 (2011).CrossRefGoogle Scholar
Sidek, H.A.A., Rosmawati, S., Talib, Z.A., Halimah, M.K., and Daud, W.M.: Synthesis and optical properties of ZnO-TeO2 glass system. Am. J. Appl. Sci. 6(8), 1489 (2009).Google Scholar
Farahmandjou, M. and Salehizadeh, S.: The optical band gap and the tailing states determination in glasses of TeO2-V2O5-K2O system. Glass Phys. Chem. 39(5), 473 (2013).CrossRefGoogle Scholar
Fares, H., Jlassi, I., Elhouichet, H., and Férid, M.: Investigations of thermal, structural and optical properties of tellurite glass with WO3 adding. J. Non-Cryst. Solids 396397, 1 (2014).CrossRefGoogle Scholar
Udovic, M., Thomas, P., Mirgorodsky, A., Durand, O., Soulis, M., Masson, O., Merle-Méjean, T., and Champarnaud-Mesjard, J.C.: Thermal characteristics, Raman spectra and structural properties of new tellurite glasses within the Bi2O3–TiO2–TeO2 system. J. Solid State Chem. 179(10), 3252 (2006).CrossRefGoogle Scholar
El-Mallawany, R.: Glass transformation temperature and stability of tellurite glasses. J. Mater. Res. 18(02), 402 (2003).CrossRefGoogle Scholar
Kauzmann, W.: The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43(2), 219 (1948).CrossRefGoogle Scholar
Chowdari, B.V.R. and Gopalakrishnan, R.: Investigations of AgX: Ag2O: MoO3:P2O5 glassy system (X = I, Br, Cl). J. Non-Cryst. Solids 105(3), 269 (1988).CrossRefGoogle Scholar
Chowdari, B.V.R., Tan, K.L., and Ling, F.: Synthesis and characterization of xCu2O yTeO2 (1−x−y) MoO3 glass system. Solid State Ionics 113115, 711 (1998).CrossRefGoogle Scholar
Yoko, T., Kamiya, K., Tanaka, K., Yamada, H., and Sakka, S.: Glass-forming region and structure of oxyhalide tellurite glasses containing LiX (X=F and Br) and Li2O. J. Ceram. Soc. Jpn. 97(1123), 289 (1989).CrossRefGoogle Scholar
Gulenko, A., Masson, O., Berghout, A., Hamani, D., and Thomas, P.: Atomistic simulations of TeO2-based glasses: Interatomic potentials and molecular dynamics. Phys. Chem. Chem. Phys. 16(27), 14150 (2014).CrossRefGoogle ScholarPubMed
Sokolov, V.O., Plotnichenko, V.G., and Dianov, E.M.: Structure of WO3-TeO2 glasses. Inorg. Mater. 43(2), 194 (2007).CrossRefGoogle Scholar
Shaltout, I. and Badr, Y.: Effects of Sm3+/Yb3+ co-doping and temperature on the Raman, IR spectra and structure of [TeO2-GeO2-K2O-Sm2O3/Yb2O3] glasses. Phys. B 381(1–2), 187 (2006).CrossRefGoogle Scholar
Umair, M.M. and Yahya, A.K.: Elastic and structural changes of xNa(2)O-(35-x)V2O5-65TeO(2) glass system with increasing sodium. Mater. Chem. Phys. 142(2–3), 549 (2013).CrossRefGoogle Scholar
Noguera, O., Merle-Méjean, T., Mirgorodsky, A.P., Smirnov, M.B., Thomas, P., and Champarnaud-Mesjard, J.C.: Vibrational and structural properties of glass and crystalline phases of TeO2. J. Non-Cryst. Solids 330(1–3), 50 (2003).CrossRefGoogle Scholar
Krins, N., Rulmont, A., Grandjean, J., Gilbert, B., Lepot, L., Cloots, R., and Vertruyen, B.: Structural and electrical properties of tellurovanadate glasses containing Li2O. Solid State Ionics 177(35–36), 3147 (2006).CrossRefGoogle Scholar
Mogus-Milankovic, A., Santic, A., Gajovic, A., and Day, D.E.: Spectroscopic investigation of MoO3-Fe2O3-P2O5 and SrO-Fe2O3-P2O5 glasses. Part I. J. Non-Cryst. Solids 325(1–3), 76 (2003).CrossRefGoogle Scholar
Rada, S., Culea, M., and Culea, E.: Structure of TeO2-B2O3 glasses inferred from infrared spectroscopy and DFT calculations. J. Non-Cryst. Solids 354(52–54), 5491 (2008).CrossRefGoogle Scholar
Abdel-Kader, A., El-Mallawany, R., and ElKholy, M.M.: Network structure of tellurite phosphate glasses: Optical absorption and infrared spectra. J. Appl. Phys. 73(1), 71 (1993).CrossRefGoogle Scholar
Dimitriev, Y., Dimitrov, V., and Arnaudov, M.: IR spectra and structures of tellurite glasses. J. Mater. Sci. 18(5), 1353 (1983).CrossRefGoogle Scholar
El-Mallawany, R.A.: Theoretical and experimental IR spectra of binary rare earth tellurite glasses—1. Infrared Phys. 29(2–4), 781 (1989).CrossRefGoogle Scholar
Arnaudov, M., Dimitrov, V., Dimitriev, Y., and Markova, L.: Infrared-spectral investigation of tellurites. Mater. Res. Bull. 17(9), 1121 (1982).CrossRefGoogle Scholar
Manisha, P., Hirota, K., Tsujigami, Y., and Sakata, H.: Structural and electrical properties of MoO3 -TeO2 glasses. J. Phys. D: Appl. Phys. 34(4), 459 (2001).Google Scholar
Znasik, P. and Jamnicky, M.: Preparation, infrared-spectra and structure of glasses in the system CuCl-Cu2O-(P2o5 + MoO3). J. Non-Cryst. Solids 146(1), 74 (1992).CrossRefGoogle Scholar
Sotani, N., Eda, K., Sadamatu, M., and Takagi, S.: Preparation and characterization of hydrogen molybdenum bronzes, HxMoO3. Bull. Chem. Soc. Jpn. 62(3), 903 (1989).CrossRefGoogle Scholar
Neov, S., Gerasimova, I., Sidzhimov, B., Kozhukharov, V., and Mikula, P.: Investigation of short-range atomic order in glasses from the MoO3-TeO2 system. J. Mater. Sci. 23(1), 347 (1988).CrossRefGoogle Scholar
Novatski, A., Steimacher, A., Medina, A.N., Bento, A.C., Baesso, M.L., Andrade, L.H.C., Lima, S.M., Guyot, Y., and Boulon, G.: Relations among nonbridging oxygen, optical properties, optical basicity, and color center formation in CaO-MgO aluminosilicate glasses. J. Appl. Phys. 104(9), 094910-1094910-7 (2008).CrossRefGoogle Scholar
Tauc, J., Grigorov, R., and Vancu, A.: Optical properties and electronic structure of amorphous Germanium. Phys Status Solidi 15(2), 627 (1966).CrossRefGoogle Scholar
Abu El-Fadl, A., Mohamad, G.A., Abd El-Moiz, A.B., and Rashad, M.: Optical constants of Zn1-xLixO films prepared by chemical bath deposition technique. Phys. B 366(1–4), 44 (2005).CrossRefGoogle Scholar
Duffy, J.A. and Ingram, M.D.: Interpretation of glass chemistry in terms of optical basicity concept. J. Non-Cryst. Solids 21(3), 373 (1976).CrossRefGoogle Scholar
Duffy, J.A. and Ingram, M.D.: New correlation between s-P spectra and Nephelauxetic ratio Beta Applications in Molten Salt and glass Chemistry. J. Chem. Phys. 54(1), 443 (1971).CrossRefGoogle Scholar
Duffy, J.A.: Chemical bonding in the oxides of the elements: A new appraisal. J. Solid State Chem. 62(2), 145 (1986).CrossRefGoogle Scholar
Dimitrov, V. and Sakka, S.: Electronic oxide polarizability and optical basicity of simple oxides .1. J. Appl. Phys. 79(3), 1736 (1996).CrossRefGoogle Scholar
Higby, P.L., Ginther, R.J., Aggarwal, I.D., and Friebele, E.J.: Glass-formation and thermal-properties of low-silica calcium aluminosilicate glasses. J. Non-Cryst. Solids 126(3), 209 (1990).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Correlation between nonbridging oxygens and the thermal and optical properties of the TeO2–Li2O–MoO3 glassy system
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Correlation between nonbridging oxygens and the thermal and optical properties of the TeO2–Li2O–MoO3 glassy system
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Correlation between nonbridging oxygens and the thermal and optical properties of the TeO2–Li2O–MoO3 glassy system
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *