Skip to main content Accessibility help
×
Home
Hostname: page-component-59df476f6b-tkt58 Total loading time: 0.486 Render date: 2021-05-18T14:10:14.566Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Control of epitaxial growth orientation in YBa2Cu3O7−δ films on vicinal (110) SrTiO3 substrates

Published online by Cambridge University Press:  31 January 2011

D. S. Linehan
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907
E. P. Kvam
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907
L. Hou
Affiliation:
Department of Physics, Purdue University, West Lafayette, Indiana 47907
M. W. McElfresh
Affiliation:
Department of Physics, Purdue University, West Lafayette, Indiana 47907
Get access

Abstract

Films of Yba2Cu3O7−δ (YBCO) were grown on (001), exact and vicinal (110), and (111) SrTiO3 single crystal substrates by pulsed laser deposition, and evaluated by x-ray diffraction and scanning force microscopy (AFM). It was observed that the YBCO was always epitaxially aligned to the substrate with the [001] (c-axis) parallel to a substrate cube axis direction. For the exact (001), (110), and (111) surfaces, there were one, two, and three orientations, respectively. For the vicinal (110) surfaces, however, there was usually only one discernible c-axis orientation, corresponding to a single {013} film surface orientation. The reduction of the (110) surface twofold symmetry by use of a vicinal substrate thus allowed controlled growth of a YBCO single crystal with an inclined c-axis orientation.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Lucia, M. L., Santamaria, J., Iborra, E., Hernandez-Rojas, J. L., and Sanchez-Quesada, F., Physica C 218, 59 (1993).CrossRefGoogle Scholar
2.Fay, H. and Brandle, C. D., Crystal Growth (Pergamon Press, Oxford, 1967), pp. 5155.Google Scholar
3.Cheung, J. T., Gergis, I., James, M., and DeWames, R. E., Appl. Phys. Lett. 60 (25), 3180 (1992).CrossRefGoogle Scholar
4.Wu, X. D., Muenchausen, R. E., Nogar, N. S., Pique, A., Edwards, R., B.Wilkens, Ravi, T. S., Hwang, D. M., and Chen, C. Y., Appl. Phys. Lett. 58 (3), 304 (1991).CrossRefGoogle Scholar
5.Fork, D. K., Fenner, D. B., Barton, R. W., Phillips, J. M., Connell, G. A. N., Boyce, J. B., and Geballe, T. H., Appl. Phys. Lett. 57 (11), 1161 (1990).CrossRefGoogle Scholar
6.Fork, D. K., Nashimoto, K., and Geballe, T. H., Appl. Phys. Lett. 60 (13), 1621 (1992).CrossRefGoogle Scholar
7.Gergis, I. S., Cheung, J. T., Trinh, T. N., Sovero, E. A., and Kobrin, P. H., Appl. Phys. Lett. 60 (16), 2026 (1992).CrossRefGoogle Scholar
8.Linker, G., Xi, X. X., Meyer, O., Li, Q., and Geerk, J., Solid State Commun. 69 (3), 249 (1989).CrossRefGoogle Scholar
9.Inam, A., Rogers, C. T., Ramesh, R., Remschnig, K., Farrow, L., Hart, D., Venkatesan, T., and Wilkens, B., Appl. Phys. Lett. 57 (23), 2484 (1990).CrossRefGoogle Scholar
10.Chan, S-W., Hwang, D. M., and Nazar, L., J. Appl. Phys. 65 (12), 4719 (1989).CrossRefGoogle Scholar
11.Aarnink, W. A. M., Reuvekamp, E. M. C. M., Verhoeven, M. A. J., Pedyash, M. V., Gerritsma, G. J., van Silfhout, A., Rogalla, H., and Ryan, T. W., Appl. Phys. Lett. 61 (5), 607 (1992).CrossRefGoogle Scholar
12.Zheng, J. P., Dong, S. Y., Bhattacharya, D., and Kwok, H. S., J. Appl. Phys. 70 (11), 7167 (1991).CrossRefGoogle Scholar
13.Seo, J. W., Kabius, B., Jia, C. L., Soltner, H., Poppe, U., and Urban, K., Physica C 255, 158 (1994).CrossRefGoogle Scholar
14.Olsson, E., Gupta, A., Thouless, M. D., Segmüller, A., and Clarke, D. R., Appl. Phys. Lett. 58 (15), 1682 (1991).CrossRefGoogle Scholar
15.Kamei, M., Takahashi, H., Fujino, S., and Morishita, T., Physica C 199, 425 (1992).CrossRefGoogle Scholar
16.Norton, M. G., Summerfelt, S. R., and Carter, C. B., Appl. Phys. Lett. 56 (22), 2246 (1990).CrossRefGoogle Scholar
17.Zheng, J. P., Dong, S. Y., and Kwok, H. S., Appl. Phys. Lett. 58 (5), 540 (1991).CrossRefGoogle Scholar
18.Akamina, S., Barrett, R. C., and Quate, C. F., Appl. Phys. Lett. 57 (3), 316 (1990).CrossRefGoogle Scholar
19.McElfresh, M., “Fundamentals of magnetism and magnetic measurements featuring Quantum Design's magnetic property measurement system,” Quantum Design (1994).Google Scholar
20.Cullity, B. D., Elements of X-Ray Diffraction (Addison-Wesley Publishing Company, Inc., Reading, PA, 1978), pp. 350360.Google Scholar
21.Tarascon, J. M., Barboux, P., Bagley, B. G., Greene, L. H., Mckinnon, W. R., and Hull, G. W., Chemistry of High-Temperature Superconductors (American Chemical Society, Washington, DC, 1987), pp. 198210.CrossRefGoogle Scholar
22.Ng-Wong, W.et al., Adv. Ceram. Mater. 2, 565 (1987).CrossRefGoogle Scholar
23.Holtzberg, F., Kaiser, D. L., Scott, B. A., McGuire, T. R., Jackson, T. N., Kleinsasser, A., and Tozar, S., Chemistry of High-Temperature Superconductors (American Chemical Society, Washington, DC, 1987), pp. 7984.CrossRefGoogle Scholar
24.Matsui, T., Suzuki, T., Ohi, A., Kimura, H., and Mukae, K., Jpn. J. Appl. Phys., Part 2 32 (9A), L1218 (1993).CrossRefGoogle Scholar
25.Eom, C. B., Marshall, A. F., Suzuki, Y., Geballe, T. H., Boyer, B., Pease, R. F. W., van Dover, R. B. and Phillips, J. M., Phys. Rev. B: Condens. Matter 46 (18), 11902 (1992).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Control of epitaxial growth orientation in YBa2Cu3O7−δ films on vicinal (110) SrTiO3 substrates
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Control of epitaxial growth orientation in YBa2Cu3O7−δ films on vicinal (110) SrTiO3 substrates
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Control of epitaxial growth orientation in YBa2Cu3O7−δ films on vicinal (110) SrTiO3 substrates
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *