Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-lwxm7 Total loading time: 0.22 Render date: 2021-06-23T05:49:34.703Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Composition/structure/property relations of multi-ion-beam reactive sputtered lead lanthanum titanate thin films: Part II. Textured microstructure development

Published online by Cambridge University Press:  03 March 2011

G.R. Fox
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
S.B. Krupanidhi
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
K.L. More
Affiliation:
High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6064
Get access

Abstract

This paper, the second of three parts, presents a detailed analysis of the crystallographic texture observed in lead lanthanum titanate (PLT) thin films deposited by multi-ion-beam reactive sputtering. Since films were deposited at a substrate temperature of 100 °C, they exhibit an amorphous structure that can be described by the structure zone model. The as-deposited microstructure is transformed via crystallization of the perovskite phase and PbO evaporation during postdeposition annealing. Transmission electron microscopy was used to determine that phase pure PLT films develop textured clusters (as large as 700 nm in diameter) consisting of 〈100〉 aligned 10 nm nanocrystals. As excess PbO is added to the PLT film, the textured cluster size decreases until only isolated PLT nanocrystals exist. Below a critical quantity of excess PbO in the as-deposited film (approximately 15 mole%), the textured cluster structure produces a 〈100〉 texture through the film thickness, which generates x-ray diffraction patterns typical of textured microstructures. At high PbO contents, the excess PbO causes the formation of clusters that are smaller than the film thickness, resulting in a polycrystalline-type x-ray diffraction pattern. A qualitative model describing microstructure development is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below.

References

1Hennings, D., Mater. Res. Bull. VI, 329 (1971).CrossRefGoogle Scholar
2Hennings, D. and Härdtl, K. H., Phys. Status Solidi A 3, 465 (1970).CrossRefGoogle Scholar
3Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology, Group III: Crystal and Solid State Physics, Ferroelectrics and Related Substances, edited by Hellwege, K. H. (Springer-Verlag, New York, 1981), Vol. 16, subvolume a: Oxides.Google Scholar
4Ogawa, T., Senda, A., and Kasanami, T., Jpn. J. Appl. Phys. 30 (9B), 2145 (1991).CrossRefGoogle Scholar
5Iijima, K., Tomita, Y., Takayama, R., and Ueda, I., J. Appl. Phys. 60 (1), 361 (1986).CrossRefGoogle Scholar
6Matsubara, S., Miura, S., Miyasaka, Y., and Shohata, N., J. Appl. Phys. 66 (12), 5826 (1989).CrossRefGoogle Scholar
7Fox, G. R., Krupanidhi, S. B., More, K. L., and Allard, L. F., J. Mater. Res. 7, 3039 (1992).CrossRefGoogle Scholar
8Thornton, J. A., Annu. Rev. Mater. Sci. 7, 239 (1977).CrossRefGoogle Scholar
9Fox, G. R. and Krupanidhi, S. B., J. Mater. Res. 8, 2203 (1993).CrossRefGoogle Scholar
10Lead 99.999% pure, CERAC, Milwaukee, WI.Google Scholar
11Lanthanum 99.9% pure, Advent Associates, Ltd., Trafford, PA.Google Scholar
12Titanium 99.9% pure, CERAC, Milwaukee, WI.Google Scholar
13Nova Electronic Materials, Dallas, TX.Google Scholar
14Ethylene glycol, Fisher Scientific, Fair Lawn, NJ.Google Scholar
15M-bond 610 Adhesive, M-Line Accessories, Measurements Group, Inc., Raleigh, NC.Google Scholar
16Crystalbond 509, Aremco Products, Inc., Ossining, NY.Google Scholar
17Dimple Grinder, Model 656, Gatan, Inc., Warrendale, PA.Google Scholar
18Dual Ion Mill, Model 600, Gatan Inc., Pleasanton, CA.Google Scholar
192000 FX Analytical Electron Microscope, JEOL Ltd., Japan.Google Scholar
204000EX Ultrahigh Resolution Transmission Electron Microscope, JEOL Ltd., Japan.Google Scholar
21Vook, R. W., Int. Met. Rev. 27, 209 (1982).CrossRefGoogle Scholar
22Halliyal, A., Study of the Piezoelectric and Pyroelectric Properties of Polar Glass-Ceramics, Doctoral Thesis, The Pennsylvania State University, 6094 (1984).Google Scholar
23Mullin, J. W., Crystallization (Butterworths, London, 1961).Google Scholar
24McMillan, P. W., Glass-Ceramics, 2nd ed. (Academic Press, New York, 1979).Google Scholar
25Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed. (John Wiley & Sons, Inc., New York, 1976), pp. 448468.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Composition/structure/property relations of multi-ion-beam reactive sputtered lead lanthanum titanate thin films: Part II. Textured microstructure development
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Composition/structure/property relations of multi-ion-beam reactive sputtered lead lanthanum titanate thin films: Part II. Textured microstructure development
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Composition/structure/property relations of multi-ion-beam reactive sputtered lead lanthanum titanate thin films: Part II. Textured microstructure development
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *