Hostname: page-component-cc8bf7c57-8cnds Total loading time: 0 Render date: 2024-12-11T06:13:25.191Z Has data issue: false hasContentIssue false

The composition and structure of SIPOS: A high spatial resolution electron microscopy study

Published online by Cambridge University Press:  03 March 2011

M. Catalano
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704
M.J. Kim
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704
R.W. Carpenter
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704
Das K. Chowdhury
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704
Joe Wong
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704
Get access

Abstract

The nanostructure and chemical distribution in semi-insulating polycrystalline oxygen-doped silicon (SIPOS) deposited on (001) Si and its isothermal transformation behavior at 900 °C were investigated by high resolution electron microscopy (HREM) and electron energy loss nanospectroscopy (EELS). The structure of the as-deposited film, which contained 15 at. % oxygen, was amorphous. No evidence for nanocrystalline second phases was found. It was similar in appearance to amorphous silicon. After annealing for 30 min at 900 °C in an inert environment (N2), a dispersion of small nanocrystals, identified as silicon by imaging, diffraction and EELS, formed in the amorphous SIPOS matrix, with a thin precipitate free zone (PFZ) adjacent to the Si substrate. The SIPOS matrix oxygen concentration increased to 36 at. % and the matrix remained amorphous after annealing. No other phases were observed in annealed specimens. Changes in Si–L near edge fine structure and low loss peaks in EELS spectra from SIPOS with increasing oxygen concentration indicated that it is a solid solution supersaturated with silicon. Microstructures indicated that the Si nanocrystals formed during a homogeneous precipitation reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Matsushita, T., Aoki, T., Ohtsu, T., Yamoto, H., Hayashi, H., Okayama, M., and Kawana, Y., IEEE Trans. Electron Devices 23, 826 (1976).CrossRefGoogle Scholar
2Aoki, T., Hayashi, H., Matsushita, T., Yamoto, H., Okayama, M., and Kawana, Y., Jpn. Electron. Eng. (JEE) 44, 265 (1976).Google Scholar
3Yablonovitch, E., Gmitter, T., Swanson, R. M., and Kwark, Y. H., Appl. Phys. Lett. 47, 1211 (1985).CrossRefGoogle Scholar
4Lai, W. C., Ang, S. S., Brown, W. D., Naseem, H. A., Ulrich, R. K., and Dressendorfer, P. V., J. Electron. Mater. 19, 419 (1990).CrossRefGoogle Scholar
5Ong, P. H., Ang, S. S., Brown, W. D., Naseem, H. A., Ulrich, R. K., and Dressendorfer, P. V., J. Electron. Mater. 20, 211 (1991).CrossRefGoogle Scholar
6Matsushita, T., N. Oh-uchi, Hayashi, H., and Yamoto, H., Appl. Phys. Lett. 35, 549 (1979).CrossRefGoogle Scholar
7Dong, D., Irene, E. A., and Young, D. R., J. Electrochem. Soc. 125, 819 (1978).CrossRefGoogle Scholar
8Hamasaki, M., Adachi, T., Wakayama, S., and Kuchi, M. K., J. Appl. Phys. 49, 3987 (1978); Phys. Lett. 35, 549 (1979).CrossRefGoogle Scholar
9Thomas, J. H. III and Goodman, A. M., J. Electrochem. Soc. 126, 1766 (1979).CrossRefGoogle Scholar
10Wong, J., Jefferson, D. A., Sparrow, T. G., Thomas, J. M., Milne, R. H., Howie, A., and Koch, E. F., Appl. Phys. Lett. 48, 65 (1986).CrossRefGoogle Scholar
11Hseih, B-C. and Greve, D.W., J. Appl. Phys. 67, 2494 (1990).CrossRefGoogle Scholar
12Philipp, H. R., J. Phys. Chem. Solids 32, 1935 (1971).CrossRefGoogle Scholar
13Kim, M. J. and Carpenter, R. W., Ultramicrosc. 21, 327 (1987).Google Scholar
14Weiss, J. K., Carpenter, R. W., Braue, W., and Higgs, A. A., in Proc. 47th Ann. EMSA Meeting, San Antonio, TX, edited by Bailey, G. W. (San Francisco Press, San Francisco, CA, 1989), p. 226.Google Scholar
15Weiss, J. K., Rez, P., Higgs, A. A., Das Chowdhury, K., and McCartney, M. R., in Proc. 47th Ann. EMSA Meeting, San Antonio, TX, edited by Bailey, G. W. (San Francisco Press, San Francisco, CA, 1989), p. 406.Google Scholar
16Skiff, W. M., Carpenter, R. W., Lin, S. H., and Higgs, A., Ultramicrosc. 25, 47 (1988).CrossRefGoogle Scholar
17Zaluzec, N. J., in Proc. 38th Ann. EMSA Meeting, Reno, NV, edited by Bailey, G.W. (Claitor's, Baton Rouge, LA, 1980), p. 198.Google Scholar
18Egerton, R. F., Philos. Mag. 31, 199 (1975).CrossRefGoogle Scholar
19Skiff, W. M., Carpenter, R. W., and Lin, S. H., J. Appl. Phys. 62, 2439 (1987).CrossRefGoogle Scholar
20Kaiser, W. and Kech, P. A., J. Appl. Phys. 28, 882 (1957).CrossRefGoogle Scholar
21Das Chowdhury, K., Carpenter, R. W., and Braue, W., Ultramicrosc. 40, 229 (1992).CrossRefGoogle Scholar
22Das, K. Chowdhury, Carpenter, R. W., and Weiss, J. K., in Proc. 47th Ann. EMSA Meeting, San Antonio, TX, edited by Bailey, G. W. (San Francisco Press, San Francisco, CA, 1989), p. 428.Google Scholar
23Hobbs, L. W., Quantitative Electron Microscopy, Proc. 25th Scottish Univ. Summer School in Physics, edited by Chapman, J. N. and Craven, A.J. (Redwood Burn Ltd., Wiltshire, U.K., 1984), p. 399.Google Scholar
24Fan, G. Y. and Cowley, J. M., Ultramicrosc. 21, 125 (1987).CrossRefGoogle Scholar
25Fan, G. Y. and Cowley, J. M., Ultramicrosc. 24, 49 (1988).Google Scholar
26Cowley, J. M., Acta Crystallogr. A 29, 537 (1973).CrossRefGoogle Scholar
27Kim, M. J. and Carpenter, R. W., J. Mater. Res. 5, 347 (1990).Google Scholar
28Cerezo, A., Grovenor, C. R. M, and Smith, G. W. D., J. Microsc. 141, 155 (1986).CrossRefGoogle Scholar
29Joy, D. C. and Maher, D. M., Brit. Inst. Phys. Conf. Ser. 60, 229 (1981).Google Scholar
30Skiff, W. M., Carpenter, R. W., and Lin, S. H., J. Appl. Phys. 64, 6328 (1988).CrossRefGoogle Scholar
31Raider, S. I. and Flitsch, R., IBM J. Res. Develop. 22, 294 (1978).Google Scholar
32Lifshitz, I. M. and Slyozov, V. V., J. Phys. Chem. Solids 19, 35 (1961).CrossRefGoogle Scholar
33Spaepen, F., in Amorphous Materials: Modeling of Structure and Properties, edited by Vitek, V. (The Metallurgical Society of AIME, New York, 1983), p. 265.Google Scholar
34Rooda, R. S. and Sinke, W. C., Appl. Surf. Sci. 36, 588 (1989).Google Scholar
35Kirtikar, A. S., Morgiel, J., Sinclair, R., Wu, I-W., and Chiang, A., in Evolution of Thin Film and Surface Microstructure, edited by Thompson, C. V., Tsao, J. Y., and Srolovitz, D. J. (Mater. Res. Soc. Symp. Proc. 202, Pittsburgh, PA, 1991), p. 627.Google Scholar
36Tu, K. N., Mayer, J. W., and Feldman, L. C., Electronic Thin Film Science for Electrical Engineers and Materials Scientists (Macmillan, New York, 1992), p. 267.Google Scholar
37Gösele, U. and Tan, T. Y., in Impurity Diffusion and Gettering in Silicon, edited by Fair, R. B., Pearce, C. W., and Washburn, J. (Mater. Res. Soc. Symp. Proc. 36, Pittsburgh, PA, 1985), p. 105.Google Scholar
38Levin, E. M., Robbins, C. R., and McMurdie, H. F., Phase Diagrams for Ceramists, edited by Reser, M. K. (The American Ceramics Society, Westerville, OH, 1964), p. 41.Google Scholar
39Darken, L. S. and Gurry, R. W., Physical Chemistry of Metals (McGraw-Hill, New York, 1953).Google Scholar