Hostname: page-component-59f8fd8595-gzxxv Total loading time: 0 Render date: 2023-03-21T19:08:18.844Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

A comparative study of electrochemical, optical properties and electropolymerization behavior of thiophene- and furan-substituted diketopyrrolopyrrole

Published online by Cambridge University Press:  07 February 2017

Supreetha Paleyanda Ponnappa
School of Chemistry, Physics and Mechanical Engineering, Nanotechnology and Molecular Sciences Discipline, Queensland University of Technology (QUT), Brisbane 4001, Australia
Sivanesan Arumugam*
School of Chemistry, Physics and Mechanical Engineering, Nanotechnology and Molecular Sciences Discipline, Queensland University of Technology (QUT), Brisbane 4001, Australia
Henry J. Spratt
Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology (QUT), Brisbane 4001, Australia
Sergei Manzhos
Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore Block EA #07-08, Singapore 117576, Singapore
Anthony P. O’Mullane
School of Chemistry, Physics and Mechanical Engineering, Nanotechnology and Molecular Sciences Discipline, Queensland University of Technology (QUT), Brisbane 4001, Australia
Godwin A. Ayoko
School of Chemistry, Physics and Mechanical Engineering, Nanotechnology and Molecular Sciences Discipline, Queensland University of Technology (QUT), Brisbane 4001, Australia
Prashant Sonar*
School of Chemistry, Physics and Mechanical Engineering, Nanotechnology and Molecular Sciences Discipline, Queensland University of Technology (QUT), Brisbane 4001, Australia
a)Address all correspondence to these authors. e-mail:
Get access


Electropolymerization is a promising approach to produce thin films of active organic conjugated materials on a desired conducting substrate. In this work, an electropolymerization study has been carried out on two diketopyrrolopyrrole (DPP)-based monomers 2,5-bis(2-butyloctyl)-3,6-di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (BO-DPPF) and 2,5-bis(2-butyloctyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (BO-DPPT). These monomers consist of thiophene and furan heterocyclic moieties attached to a DPP core with a common solubilizing alkyl chain (butyl-octyl). The properties of these monomers were analyzed via differential scanning calorimetry, thermogravimetric analysis, UV–Vis spectrometry (UV) and photoluminescence. Cyclic voltammetry (CV) studies indicate the presence of irreversible oxidation and reduction reactions. The electropolymerization of BO-DPPF and BO-DPPT electron-deficient monomers to form polymer films on a glassy carbon electrode is achieved by applying a potential between −2 V and 2 V versus ferrocene for up to 50 cycles. The properties of the polymers were investigated using the cyclic voltammetry (CV) technique.

Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


c) Current Address: Future Industries Institute, University of South Australia, Adelaide, Australia
Contributing Editor: Erik G. Herbert



Iqbal, A., Jost, M., Kirchmayr, R., Pfenninger, J., Rochat, A., and Wallquist, O.: The synthesis and properties of 1,4-diketo-pyrrolo[3,4-C] pyrroles. Bull. Soc. Chim. Belg. 97(8–9), 615 (1988).CrossRefGoogle Scholar
Li, Y., Singh, S.P., and Sonar, P.: A high mobility P-type DPP-thieno[3,2-b] thiophene copolymer for organic thin-film transistors. Adv. Mater. 22(43), 4862 (2010).CrossRefGoogle ScholarPubMed
Yi, Z., Wang, S., and Liu, Y.: Design of high-mobility diketopyrrolopyrrole-based π-conjugated copolymers for organic thin-film transistors. Adv. Mater. 27(24), 3589 (2015).CrossRefGoogle ScholarPubMed
Li, Y., Sonar, P., Murphy, L., and Hong, W.: High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy Environ. Sci. 6(6), 1684 (2013).CrossRefGoogle Scholar
Kanimozhi, C., Balraju, P., Sharma, G., and Patil, S.: Synthesis of diketopyrrolopyrrole containing copolymers: A study of their optical and photovoltaic properties. J. Phys. Chem. B 114(9), 3095 (2010).CrossRefGoogle ScholarPubMed
Qu, S. and Tian, H.: Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics. Chem. Commun. 48(25), 3039 (2012).CrossRefGoogle ScholarPubMed
Fenwick, O., Fusco, S., Baig, T., Di Stasio, F., Steckler, T., Henriksson, P., Fléchon, C., Andersson, M.R., and Cacialli, F.: Efficient red electroluminescence from diketopyrrolopyrrole copolymerised with a polyfluorene. APL Mater. 1(3), 032108 (2013).CrossRefGoogle Scholar
Wolfbeis, O.S.: Materials for fluorescence-based optical chemical sensors. J. Mater. Chem. 15(27–28), 2657 (2005).CrossRefGoogle Scholar
Qu, Y., Hua, J., and Tian, H.: Colorimetric and ratiometric red fluorescent chemosensor for fluoride ion based on diketopyrrolopyrrole. Org. Lett. 12(15), 3320 (2010).CrossRefGoogle ScholarPubMed
Zhou, Y., Han, S-T., Sonar, P., and Roy, V.: Nonvolatile multilevel data storage memory device from controlled ambipolar charge trapping mechanism. Sci. Rep. 3, 2319 (2013).CrossRefGoogle ScholarPubMed
Zhu, Y.: New Diketopyrrolopyrrole (DPP)-Based Conjugated Polymers Prepared Upon Palladium Catalyzed Polymerization and Electropolymerization Reactions (Universität zu Köln, China, 2006).Google Scholar
Zhu, Y., Zhang, K., and Tieke, B.: Electrochemical polymerization of bis(3,4-ethylenedioxythiophene)-substituted 1,4-diketo-3,6-diphenyl-pyrrolo[3,4-c] pyrrole (DPP) derivative. Macromol. Chem. Phys. 210(6), 431 (2009).CrossRefGoogle Scholar
Adamcová, Z. and Dempírová, L.: Film-forming electropolymerization. Prog. Org. Coat. 16(4), 295 (1989).CrossRefGoogle Scholar
Liu, C., Luo, H., Shi, G., Yang, J., Chi, Z., and Ma, Y.: Luminescent network film deposited electrochemically from a carbazole functionalized AIE molecule and its application for OLEDs. J. Mater. Chem. C 3(15), 3752 (2015).CrossRefGoogle Scholar
Zhang, F., Petr, A., Kirbach, U., and Dunsch, L.: Improved hole injection and performance of multilayer OLED devices via electrochemically prepared-polybithiophene layers. J. Mater. Chem. 13(2), 265 (2003).CrossRefGoogle Scholar
Yu, W., Xu, B., Dong, Q., Zhou, Y., Zhang, J., Tian, W., and Yang, B.: A two-step method combining electrodepositing and spin coating for solar cell processing. J. Solid State Electrochem. 14(6), 1051 (2010).CrossRefGoogle Scholar
Palma-Cando, A. and Scherf, U.: Electrogenerated thin films of microporous polymer networks with remarkably increased electrochemical response to nitroaromatic analytes. ACS Appl. Mater. Interfaces 7(21), 11127 (2015).CrossRefGoogle ScholarPubMed
You, J., Li, G., Wang, R., Nie, Q., Wang, Z., and Li, J.: Pyrene-cored dendrimer with carbazole derivatives as dendrons: Synthesis, properties and application in white light-emitting diode. Phys. Chem. Chem. Phys. 13(39), 17825 (2011).CrossRefGoogle ScholarPubMed
Dhar, J., Venkatramaiah, N., Anitha, A., and Patil, S.: Photo physical, electrochemical and solid-state properties of diketopyrrolopyrrole based molecular materials: importance of the donor group. J. Mater. Chem. C 2(17), 3457 (2014).CrossRefGoogle Scholar
Sonar, P., Chang, J., Shi, Z., Gann, E., Li, J., Wu, J., and McNeill, C.R.: Hole mobility of 3.56 cm2 V−1 s−1 accomplished using more extended dithienothiophene with furan flanked diketopyrrolopyrrole polymer. J. Mater. Chem. C 3(36), 9299 (2015).CrossRefGoogle Scholar
Li, Y., Sonar, P., Singh, S.P., Ooi, Z.E., Lek, E.S.H., and Loh, M.Q.Y.: Poly(2,5-bis(2-octyldodecyl)-3,6-di(furan-2-yl)-2,5-dihydro-pyrrolo[3,4-c] pyrrole-1,4-dione-co-thieno[3,2-b]thiophene): A high performance polymer semiconductor for both organic thin film transistors and organic photovoltaics. Phys. Chem. Chem. Phys. 14(19), 7162 (2012).CrossRefGoogle Scholar
Bijleveld, J.C., Karsten, B.P., Mathijssen, S.G., Wienk, M.M., de Leeuw, D.M., and Janssen, R.A.: Small band gap copolymers based on furan and diketopyrrolopyrrole for field-effect transistors and photovoltaic cells. J. Mater. Chem. 21(5), 1600 (2011).CrossRefGoogle Scholar
Woo, C.H., Beaujuge, P.M., Holcombe, T.W., Lee, O.P., and Fréchet, J.M.: Incorporation of furan into low band-gap polymers for efficient solar cells. J. Am. Chem. Soc. 132(44), 15547 (2010).CrossRefGoogle ScholarPubMed
Li, Y., Sonar, P., Singh, S.P., Zeng, W., and Soh, M.S.: 3,6-Di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione and bithiophene copolymer with rather disordered chain orientation showing high mobility in organic thin film transistors. J. Mater. Chem. 21(29), 10829 (2011).CrossRefGoogle Scholar
Sonar, P., Zhuo, J.M., Zhao, L.H., Lim, K.M., Chen, J., Rondinone, A.J., Singh, S.P., Chua, L.L., Ho, P.K.H., and Dodabalapur, A.: Furan substituted diketopyrrolopyrrole and thienylenevinylene based low band gap copolymer for high mobility organic thin film transistors. J. Mater. Chem. 22(33), 17284 (2012).CrossRefGoogle Scholar
Welterlich, I., Neudörfl, J-M., and Tieke, B.: Electrochemical polymerization of 1,3,4,6-tetraarylpyrrolo[3,2-b]pyrrole-2,5-dione (isoDPP) derivatives. Polym. Chem. 6(6), 1005 (2015).CrossRefGoogle Scholar
Huang, J., Jia, H., Li, L., Lu, Z., Zhang, W., He, W., Jiang, B., Tang, A., Tan, Z.a., and Zhan, C.: Fine-tuning device performances of small molecule solar cells via the more polarized DPP-attached donor units. Phys. Chem. Chem. Phys. 14(41), 14238 (2012).CrossRefGoogle ScholarPubMed
Zhang, K., Tieke, B., Forgie, J.C., and Skabara, P.J.: Electrochemical polymerisation of N-arylated and N-alkylated EDOT-substituted pyrrolo[3,4-c]pyrrole-1,4-dione (DPP) derivatives: Influence of substitution pattern on optical and electronic properties. Macromol. Rapid Commun. 30(21), 1834 (2009).CrossRefGoogle ScholarPubMed
Sheberla, D., Patra, S., Wijsboom, Y.H., Sharma, S., Sheynin, Y., Haj-Yahia, A-E., Barak, A.H., Gidron, O., and Bendikov, M.: Conducting polyfurans by electropolymerization of oligofurans. Chem. Sci. 6(1), 360 (2015).CrossRefGoogle Scholar
Li, Y., Sonar, P., Singh, S.P., Soh, M.S., Van Meurs, M., and Tan, J.: Annealing-free high-mobility diketopyrrolopyrrole-quaterthiophene copolymer for solution-processed organic thin film transistors. J. Am. Chem. Soc. 133(7), 2198 (2011).CrossRefGoogle ScholarPubMed
Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965).CrossRefGoogle Scholar
Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas Phys Rev. 136(3B), B864 (1964).CrossRefGoogle Scholar
Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., and Petersson, G.: Gaussian 09, Gaussian Inc., Wallingford, CT. 4 (2009).
Becke, A.d.: Becke’s 3 parameter functional combined with the non-local correlation LYP. J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
Dunning, T.H. Jr. and Hay, P.J.: In Modern Theoretical Chemistry, Vol. 3, H.F. Schaefer, ed. (Plenum Press, New York, 1977); p. 189.
Check, C.E., Faust, T.O., Bailey, J.M., Wright, B.J., Gilbert, T.M., and Sunderlin, L.S.: Addition of polarization and diffuse functions to the LANL2DZ basis set for P-block elements. J. Phys. Chem. A 105(34), 8111 (2001).CrossRefGoogle Scholar
Mennucci, B.: Polarizable continuum model. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2(3), 386 (2012).Google Scholar
Casida, M.E.: Time-dependent density-functional theory for molecules and molecular solids. J. Mol. Struct.: THEOCHEM 914(1), 3 (2009).CrossRefGoogle Scholar
Bronstein, H., Chen, Z., Ashraf, R.S., Zhang, W., Du, J., Durrant, J.R., Shakya Tuladhar, P., Song, K., Watkins, S.E., and Geerts, Y.: Thieno [3,2-b]thiophene–diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J. Am. Chem. Soc. 133(10), 3272 (2011).CrossRefGoogle ScholarPubMed
Zou, Y., Gendron, D., Neagu-Plesu, R., and Leclerc, M.: Synthesis and characterization of new low-bandgap diketopyrrolopyrrole-based copolymers. Macromolecules 42(17), 6361 (2009).CrossRefGoogle Scholar
Grzybowski, M. and Gryko, D.T.: Diketopyrrolopyrroles: Synthesis, reactivity, and optical properties. Adv. Opt. Mater. 3(3), 280 (2015).CrossRefGoogle Scholar
Sonar, P., Ha, T.J., Seohee, K., and Manzhos, S.: Comparative study of furan and thiophene furan flanked diketopyrrolopyrrole based small molecules and their organic field effect transistor performance. J. Mater. Res., submitted.
Rabus, D.G.: Optofulidic System Technology, Vol. 82 (Walter de Gruyter GmbH, Berlin, 2014).Google Scholar
Liu, J., Walker, B., Tamayo, A., Zhang, Y., and Nguyen, T.Q.: Effects of heteroatom substitutions on the crystal structure, film formation, and optoelectronic properties of diketopyrrolopyrrole-based materials. Adv. Funct. Mater. 23(1), 47 (2013).CrossRefGoogle Scholar
Sanford, W.E. and Boyd, R.K.: Molecular reorientation in crystalline thiophene and furan. Can. J. Chem. 54(17), 2773 (1976).CrossRefGoogle Scholar
Cosnier, S. and Karyakin, A.: Electropolymerization: Concepts, Materials and Applications (John Wiley & Sons, New York, 2011).Google Scholar
Ripaud, E., Demeter, D., Rousseau, T., Boucard-Cétol, E., Allain, M., Po, R., Leriche, P., and Roncali, J.: Structure–properties relationships in conjugated molecules based on diketopyrrolopyrrole for organic photovoltaics. Dyes Pigm. 95(1), 126 (2012).CrossRefGoogle Scholar
Chandran, D., Marszalek, T., Zajaczkowski, W., Madathil, P.K., Vijayaraghavan, R.K., Koh, Y-H., Park, S-y., Ochsmann, J.R., Pisula, W., and Lee, K-S.: Thin film morphology and charge carrier mobility of diketopyrrolopyrrole based conjugated polymers. Polymer 73, 205 (2015).CrossRefGoogle Scholar
Leonat, L., Sbarcea, G., and Branzoi, I.V.: Cyclic voltammetry for energy levels estimation of organic materials. Chem. Mater. Sci. 75(3), 111 (2013).Google Scholar
Li, Y., Sun, B., Sonar, P., and Singh, S.P.: Solution processable poly(2,5-dialkyl-2,5-dihydro-3,6-di-2-thienyl-pyrrolo[3,4-c]pyrrole-1,4-dione) for ambipolar organic thin film transistors. Org. Electron. 13(9), 1606 (2012).CrossRefGoogle Scholar
Johansson, T., Mammo, W., Svensson, M., Andersson, M.R., and Inganäs, O.: Electrochemical bandgaps of substituted polythiophenes. J. Mater. Chem. 13(6), 1316 (2003).CrossRefGoogle Scholar
Supplementary material: File

Ponnappa supplementary material

Ponnappa supplementary material 1

Download Ponnappa supplementary material(File)
File 2 MB