Hostname: page-component-546b4f848f-hhr79 Total loading time: 0 Render date: 2023-06-03T04:31:46.870Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Characterizing high-pressure compressed C60 whiskers and C60 powder

Published online by Cambridge University Press:  31 January 2011

Kun'ichi Miyazawa
Advanced Materials Laboratory, National Institute for Materials Science, 1–1, Namiki, Tsukuba, 305–0044, Japan
Minoru Akaishi
Advanced Materials Laboratory, National Institute for Materials Science, 1–1, Namiki, Tsukuba, 305–0044, Japan
Yusuke Kuwasaki
Department of Materials Engineering, School of Engineering, The University of Tokyo, 7–3–1, Hogno, Bunkyo-ku, Tokyo, 113–8656, Japan
Tadatomo Suga
Research Center for Advanced Science and Technology, The University of Tokyo, 4–6–1, Komaba, Meguro-ku, Tokyo, 153–8904, Japan
Get access


Structural, mechanical, and electrical properties were examined for C60 whiskers, high-pressure sintered C60 whiskers, and C60 powder. A high density of dislocations was observed in the C60 whiskers, and the C60 whiskers with diameters of a few hundred nanometers were found to be flexible. Although both the specimens sintered under the same condition showed similar surface x-ray diffraction profiles with a strong accumulation of [110]tr orientation, the sintered C60 whiskers showed a higher micro-Vickers hardness and an electrical resistivity four orders of magnitude lower than that of the sintered C60 powder.

Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Miyazawa, K., Obayashi, A., and Kuwabara, M., J. Am. Ceram. Soc. 84, 3037 (2001).CrossRefGoogle Scholar
2.Miyazawa, K., Kuwasaki, Y., Obayashi, A., and Kuwabara, M., J. Mater. Res. 17, 83 (2002).CrossRefGoogle Scholar
3.Pekker, S., Jánossy, A., Mihaly, L., Chauvet, O., Carrard, M., Forró, L., Science 265, 1077 (1994).CrossRefGoogle Scholar
4.Miyazawa, K., J. Am. Ceram. Soc. 85, 1297 (2002).CrossRefGoogle Scholar
5.Miyazawa, K. and Hamamoto, K., J. Mater. Res. 17, 2205 (2002).CrossRefGoogle Scholar
6.Iwasa, Y., Arima, T., Fleming, R.M., Siegrist, T., Zhou, O., Haddon, R.C., Rothberg, L.J., Lyons, K.B., Carter, H.L. Jr, Hebard, A.F., Tycko, R., Dabbagh, G., Krajewski, J.J., Thomas, G.A., and Yagi, T., Science. 264, 1570 (1994).CrossRefGoogle Scholar
7.Miyazawa, K., Satsuki, H., Kuwabara, M., and Akaishi, M., J. Mater. Res. 16, 1960 (2001).CrossRefGoogle Scholar
8.Callister, W.D., in Materials Science and Engineering, 3rd ed. (John Wiley & Sons, Inc., New York, 1994), pp. 183185.Google Scholar
9.McCready, D. and Alnajjar, M., Powder Diffraction File No. 44558 (International Center for Diffraction Data, Newton Square, PA, 1994).Google Scholar
10.Rao, A.M., Eklund, P.C., Venkateswaran, U.D., Tucker, J., Duncan, , Bedele, G.M., Stephens, P.W., Hodeau, J., Marques, , Núñez-Regueiro, M., Bashkin, I.O., Ponyatovsky, E.G., and Morovsky, A.P., Appl. Phys. A 64, 231 (1997).CrossRefGoogle Scholar
11.Yasukawa, M. and Yamanaka, S., Chem. Phys. Lett. 341, 467 (2001).CrossRefGoogle Scholar
12.Miyazawa, K., Kuwasaki, Y., Hamamoto, K., Nagata, S., Obayashi, A., and Kuwabara, M., Surf. Interface Anal. (in press).Google Scholar