Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-p4zth Total loading time: 0.279 Render date: 2021-07-30T12:01:29.096Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Characteristics of ultraviolet-assisted pulsed-laser-deposited Y2O3 thin films

Published online by Cambridge University Press:  31 January 2011

V. Craciun
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
E. S. Lambers
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
N. D. Bassim
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
R. K. Singh
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
D. Craciun
Affiliation:
Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Bucharest, Romania
Corresponding
E-mail address:
Get access

Abstract

The properties of thin Y2O3 films grown using an in situ ultraviolet (UV)-assisted pulsed laser deposition (PLD) technique were studied. With respect to Y2O3 films grown by conventional PLD under similar conditions but without UV illumination, the UVPLD-grown films exhibited better structural and optical properties, especially for lower substrate temperatures, from 340 to 400 °C. These layers were highly crystalline and textured along the (111) direction, and their refractive index values were similar to those of reference Y2O3 layers. They also exhibited a better stoichiometry and contained less physisorbed oxygen than the conventional PLD-grown layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Singh, R.K. and Narayan, J., Phys. Rev. B 43, 8843 (1990).CrossRefGoogle Scholar
2.Singh, R.K. and Kumar, D., Mater. Sci. Engr. Reports R22, 113 (1998).CrossRefGoogle Scholar
3.Park, J., Rouleau, C.M., and Lowndes, D.H., in Advances in Laser Ablation of Materials, edited by Singh, R.K., Lowndes, D.H., Chrisey, D.B., Fogarassy, E., and Narayan, J. (Mater. Res. Soc. Symp. Proc. 526, Warrendale, PA, 1998), p. 27.Google Scholar
4.McKee, R.A., Walker, F.J., and Conner, J.R., Appl. Phys. Lett. 59, 782 (1991).CrossRefGoogle Scholar
5.Prusseit, W., Corsepius, S., and Zwerger, M., Physica C 201, 249 (1992).CrossRefGoogle Scholar
6.Horwitz, J.S., Grabowski, K.S., Chrisey, D.B., and Leuchtner, R.E., Appl. Phys. Lett. 59, 1565 (1991).CrossRefGoogle Scholar
7.Nagabhusman, R. and Singh, R.K., in Transient Thermal Processing of Materials, edited by Ravindrai, D.N. and Singh, R.K. (TMS, Warrendale, PA, 1997). p. 45.Google Scholar
8.Gluck, N.S., Sankur, H., and Gunning, W.J., J. Vac. Sci. Technol., A 7, 2983 (1989).CrossRefGoogle Scholar
9.Reisse, G., Keiper, B., Weissmantel, S., Johansen, H., Scolz, R., and Martini, T., Thin Solid Films 241, 119 (1994).CrossRefGoogle Scholar
10.Holzapfel, B., Betz, V., Schlafer, D., Bauer, H-D., and Schultz, L., IEEE Trans. Appl. Supercond. 9, 1051 (1999).CrossRefGoogle Scholar
11.Koren, G., Gupta, A., and Baseman, R.J., Appl. Phys. Lett. 54, 1920 (1989).CrossRefGoogle Scholar
12.Otis, C.E., Gupta, A., and Braren, B., Appl. Phys. Lett. 62, 102 (1993).CrossRefGoogle Scholar
13.Tabata, H., Kawai, T., and Kawai, S., Appl. Phys. Lett. 58, 1443 (1991).CrossRefGoogle Scholar
14.Otsubo, S., Minamikawa, T., Yonezawa, Y., Maeda, T., Morimoto, A., and Shimizu, T., Jpn. J. Appl. Phys. Part I 28, L2211 (1989).CrossRefGoogle Scholar
15.Morimoto, A., Mizukami, S., Shimizu, T., Minamikawa, T., Yonezawa, Y., Segawa, K., and Otsubo, S., in Layered Superconductors: Fabrication, Properties and Applications, edited by Shaw, D.T., Tsuei, C.C., Schneider, T.R., and Shiohara, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992), p. 371.Google Scholar
16.Horwitz, J.S., Chrisey, D.B., Grabowski, K.S., Carosella, C.A., Lubitz, P., and Edmondson, C., in Laser Ablation in Materials Processing: Fundamentals and Applications, edited by Braren, B., Dubowski, J.J., and Norton, D. (Mater. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1993), p. 391.Google Scholar
17.Estler, R.C., Nogar, N.S., Muenchausen, R.E., Dye, R.C., Flamme, C., Martin, J.A., Garcia, A.R., and Foltyn, S., Mater. Lett. 9, 342 (1990).CrossRefGoogle Scholar
18.Boulmer-Leborgne, C., Thomann, A.L., Andreazza, P., Andreazza-Vignolle, C., Hermann, J., Craciun, V., Echegut, P., and Craciun, D., Appl. Surf. Sci. 125, 137 (1998).CrossRefGoogle Scholar
19.Wengenmair, H., Gerlach, J.W., Preckwinkel, U., Stritzker, B., and Rauschenbach, B., Appl. Surf. Sci. 99, 313 (1996).CrossRefGoogle Scholar
20.Craciun, V., Howard, J., and Singh, R.K., in Multicomponent Oxide Films for Electronics, edited by Hawley, M.R., Blank, D.H.A, Eom, C-B., Schlom, D.G., and Streiffer, S.K. (Mater. Res. Soc. Symp. Proc. 574, Warrendale, PA, 1999), p. 193.Google Scholar
21.Craciun, V., Craciun, D., and Boyd, I.W., Electron. Lett. 34, 1527 (1998).CrossRefGoogle Scholar
22.Craciun, V., Boyd, I.W., Craciun, D., Andreazza, P., and Perriere, J., Appl. Surf. Sci 138–139, 587 (1999).CrossRefGoogle Scholar
23.Craciun, V., Boyd, I.W., Craciun, D., Andreazza, P., and Perriere, J., J. Appl. Phys. 85, 8410 (1999).CrossRefGoogle Scholar
24.Cho, K.G., Kumar, D., Jones, S.L., Lee, D.G., Holloway, P.H., and Singh, R.K., J. Electrochem. Soc. 145, 3456 (1998).CrossRefGoogle Scholar
25.Cho, K.G., Kumar, D., Holloway, P.H., and Singh, R.K., Appl. Phys. Lett. 73, 3058 (1998).CrossRefGoogle Scholar
26.Pearton, S.J., Ren, F., Abernathy, C.R., Hobson, W.S., and Luftman, H.S., Appl. Phys. 58, 1416 (1991).Google Scholar
27.Moon, D.W., Kurokawa, A., Ichimura, S., Lee, H.W., and Jeon, I.C., J. Vac. Sci. Technol., A 17, 150 (1999).CrossRefGoogle Scholar
28.Baulch, D.L., Cox, R.A., Hampson, R.F. Jr, Kerr, J.A., Troe, J., and Watson, R.T., J. Phys. Chem. Ref. Data 9, 295 (1980).CrossRefGoogle Scholar
29.Greer, J.A. and Tabat, M., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D.K., Phillips, J.M., Ramesh, R., and Wolf, R.M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 87.Google Scholar
30.Araiza, J.J., Cardenas, M., Falcony, C., Mendez-Garcia, V.H., Lopez, M., and Contreras-Puente, G., J. Vac. Sci. Technol., A 16, 3305 (1998).CrossRefGoogle Scholar
31.Choi, S.C., Cho, M.H., Whangbo, S.W., Whang, C.N., Hong, C.E., Kim, N.Y., Jeon, J.S., Lee, S.I., and Lee, M.Y., Nucl. Instr. Meth. B 121, 170 (1997).CrossRefGoogle Scholar
32.Cho, M-H., Ko, D-H., Jeong, K., Whangbo, S.W., Whang, C.N., Choi, S.C., and Cho, S.J., J. Appl. Phys. 85, 2909 (1999).CrossRefGoogle Scholar
33.Ingo, G.M. and Marletta, G., Nucl. Instrum. Methods Phys. Res., Sect. B 116, 440 (1996).CrossRefGoogle Scholar
34.Duraud, J.P., Jollet, F., Thromat, N., Gautier, M., Maire, P., le Gressus, C., and Dartyge, E., J. Am. Ceram. Soc. 73, 2467 (1990).CrossRefGoogle Scholar
35.Handbook of Optical Constants of Solids, edited by Palik, D. (Academic Press, Boston, 1991), Vol. II, p. 1090.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Characteristics of ultraviolet-assisted pulsed-laser-deposited Y2O3 thin films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Characteristics of ultraviolet-assisted pulsed-laser-deposited Y2O3 thin films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Characteristics of ultraviolet-assisted pulsed-laser-deposited Y2O3 thin films
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *