Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-t4qhp Total loading time: 0.639 Render date: 2022-08-10T20:13:22.165Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Catalyst and catalyst support morphology evolution in single-walled carbon nanotube supergrowth: Growth deceleration and termination

Published online by Cambridge University Press:  31 January 2011

Seung Min Kim*
Affiliation:
School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907
Cary L. Pint*
Affiliation:
Department of Physics and Astronomy, and Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005
Placidus B. Amama
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433; and University of Dayton Research Institute (UDRI), University of Dayton, Dayton, Ohio 45469
Robert H. Hauge
Affiliation:
Department of Chemistry and Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005
Benji Maruyama
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433
Eric A. Stach*
Affiliation:
School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907
*
a)These authors contributed equally to this work.
a)These authors contributed equally to this work.
b)Address all correspondence to this author. e-mail: estach@bnl.gov
Get access

Abstract

Detailed understanding of growth termination in vertically aligned single-walled carbon nanotubes (SWNTs) made via supergrowth, or water-assisted growth, remains critical to achieving the ultralong SWNTs necessary for next-generation applications. We describe the irreversible catalyst morphology evolution that occurs during growth, and which limits the lifetime of surface supported catalysts. Growth termination is strongly dependent on growth temperature, but not sensitive to C2H2:H2O ratio. In addition to both planar Ostwald ripening of small (sub-5 nm) Fe catalyst particles and diffusion of metal atoms into the alumina support, other features that contribute to growth termination or deceleration are described, including center-of-mass particle motions and coalescence of smaller species of surface supported Fe nanoparticles. Additionally, a temperature-induced structural transition in the alumina catalyst support is found to be coincident with abrupt growth termination at temperatures of 800 °C and higher. In situ electron microscopy observations are used to directly support these observations.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000)CrossRefGoogle Scholar
2.Wei, B.Q., Vajtai, R., Ajayan, P.M.Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79, 1172 (2001)CrossRefGoogle Scholar
3.McEuen, P.L., Fuhrer, M.S., Park, H.K.Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78 (2002)CrossRefGoogle Scholar
4.Hecht, D., Hu, L.B., Gruner, G.Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl. Phys. Lett. 89, 133112 (2006)CrossRefGoogle Scholar
5.Pint, C.L., Xu, Y.Q., Morosan, E., Hauge, R.H.Alignment dependence of one-dimensional electronic hopping transport observed in films of highly aligned, ultralong single-walled carbon nanotubes. Appl. Phys. Lett. 94, 182107 (2009)CrossRefGoogle Scholar
6.Hone, J., Llaguno, M.C., Nemes, N.M., Johnson, A.T., Fischer, J.E., Walters, D.A., Casavant, M.J., Schmidt, J., Smalley, R.E.Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 77, 666 (2000)CrossRefGoogle Scholar
7.Behabtu, N., Green, M.J., Pasquali, M.Carbon nanotube-based neat fibers. Nano Today 3, 24 (2008)CrossRefGoogle Scholar
8.Wu, Z.C., Chen, Z.H., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., Rinzler, A.G.Transparent, conductive carbon nanotube films. Science 305, 1273 (2004)CrossRefGoogle Scholar
9.Amama, P.B., Pint, C.L., McJilton, L., Kim, S.M., Stach, E.A., Murray, P.T., Hauge, R.H., Maruyama, B.Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 9, 44 (2009)CrossRefGoogle Scholar
10.Futaba, D.N., Goto, J., Yasuda, S., Yamada, T., Yumura, M., Hata, K.A background level of oxygen-containing aromatics for synthetic control of carbon nanotube structure. J. Am. Chem. Soc. 131, 15992 (2009)CrossRefGoogle Scholar
11.Futaba, D.N., Goto, J., Yasuda, S., Yamada, T., Yumura, M., Hata, K.General rules governing the highly efficient growth of carbon nanotubes. Adv. Mater. 21, 4811 (2009)CrossRefGoogle Scholar
12.Futaba, D.N., Hata, K., Yamada, T., Mizuno, K., Yumura, M., Iijima, S.Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95, 056104 (2005)CrossRefGoogle Scholar
13.Yamada, T., Maigne, A., Yudasaka, M., Mizuno, K., Futaba, D.N., Yumura, M., Iijima, S., Hata, K.Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett. 8, 4288 (2008)CrossRefGoogle Scholar
14.Yasuda, S., Futaba, D.N., Yamada, T., Satou, J., Shibuya, A., Takai, H., Arakawa, K., Yumura, M., Hata, K.Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction. ACS Nano. 3, 4164 (2009)CrossRefGoogle Scholar
15.Zhao, B., Futaba, D.N., Yasuda, S., Akoshima, M., Yamada, T., Hata, K.Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. ACS Nano. 3, 108 (2009)CrossRefGoogle Scholar
16.Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S.Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science 306, 1362 (2004)CrossRefGoogle Scholar
17.Noda, S., Hasegawa, K., Sugime, H., Kakehi, K., Zhang, Z.Y., Maruyama, S., Yamaguchi, Y.Millimeter-thick single-walled carbon nanotube forests: Hidden role of catalyst support. Jpn. J. Appl. Phys., Part 2 46, L399 (2007)CrossRefGoogle Scholar
18.Pint, C.L., Xu, Y.Q., Pasquali, M., Hauge, R.H.Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets. ACS Nano. 2, 1871 (2008)CrossRefGoogle Scholar
19.Huang, J.Q., Zhang, Q., Zhao, M.Q., Wei, F.The release of free standing vertically-aligned carbon nanotube arrays from a substrate using CO2 oxidation. Carbon 48, 1441 (2010)CrossRefGoogle Scholar
20.Amama, P.B., Pint, C.L., Kim, S.M., McJilton, L., Eyink, K.G., Stach, E.A., Hauge, R.H., Maruyama, B.Influence of alumina type on the evolution and activity of alumina-supported Fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano. 4, 895 (2010)CrossRefGoogle Scholar
21.Kim, S.M., Pint, C.L., Amama, P.B., Zahkarov, D.N., Hauge, R.H., Maruyama, B., Stach, E.A.Evolution in catalyst morphology leads to carbon nanotube growth termination. J. Phys. Chem. Lett. 1, 918 (2010)CrossRefGoogle Scholar
22.Pint, C.L., Pheasant, S.T., Parra-Vasquez, A.N.G., Horton, C., Xu, Y.Q., Hauge, R.H.Investigation of optimal parameters for oxide-assisted growth of vertically aligned single-walled carbon nanotubes. J. Phys. Chem. C 113, 4125 (2009)CrossRefGoogle Scholar
23.Liu, H., Zhang, Y., Li, R.Y., Sun, X.L., Wang, F.P., Ding, Z.F., Merel, P., Desilets, S.Aligned synthesis of multi-walled carbon nanotubes with high purity by aerosol assisted chemical vapor deposition: Effect of water vapor. Appl. Surf. Sci. 256, 4692 (2010)CrossRefGoogle Scholar
24.Yoshihara, N., Ago, H., Tsuji, M.Chemistry of water-assisted carbon nanotube growth over Fe–Mo/MgO catalyst. J. Phys. Chem. C 111, 11577 (2007)CrossRefGoogle Scholar
25.Wen, Q., Zhang, R.F., Qian, W.Z., Wang, Y.R., Tan, P.H., Nie, J.Q., Wei, F.Growing 20 cm long DWNTs/TWNTs at a rapid growth rate of 80–90 mu m/s. Chem. Mater. 22, 1294 (2010)CrossRefGoogle Scholar
26.Hu, B., Ago, H., Yoshihara, N., Tsuji, M.Effects of water vapor on diameter distribution of SWNTs grown over Fe/MgO-based catalysts. J. Phys. Chem. C 114, 3850 (2010)CrossRefGoogle Scholar
27.Hasegawa, K., Noda, S., Sugime, H., Kakehi, K., Maruyama, S., Yamaguchi, Y.Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests. J. Nanosci. Nanotechnol. 8, 6123 (2008)CrossRefGoogle Scholar
28.Huang, J.Q., Zhang, Q., Zhao, M.Q., Wei, F.Process intensification by CO2 for high quality carbon nanotube forest growth: Double-walled carbon nanotube convexity or single-walled carbon nanotube bowls? Nano Res. 2, 872 (2009)CrossRefGoogle Scholar
29.Zhang, Y.Y., Gregoire, J.M., van Dover, R.B., Hart, A.J.Ethanol-promoted high-yield growth of few-walled carbon nanotubes. J. Phys. Chem. C 114, 6389 (2010)CrossRefGoogle Scholar
30.Murakami, Y., Chiashi, S., Miyauchi, Y., Hu, M.H., Ogura, M., Okubo, T., Maruyama, S.Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett. 385, 298 (2004)CrossRefGoogle Scholar
31.Zhang, G.Y., Mann, D., Zhang, L., Javey, A., Li, Y.M., Yenilmez, E., Wang, Q., McVittie, J.P., Nishi, Y., Gibbons, J., Dai, H.J.Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Nat. Acad. Sci. U.S.A. 102, 16141 (2005)CrossRefGoogle Scholar
32.Yakobson, B.I., Smalley, R.E.Fullerene nanotubes: C-1000000 and beyond. Am. Sci. 85, 324 (1997)Google Scholar
33.Bedewy, M., Meshot, E.R., Guo, H.C., Verploegen, E.A., Lu, W., Hart, A.J.Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J. Phys. Chem. C 113, 20576 (2009)CrossRefGoogle Scholar
34.Han, J.H., Graff, R.A., Welch, B., Marsh, C.P., Franks, R., Strano, M.S.A mechanochemical model of growth termination in vertical carbon nanotube forests. ACS Nano. 2, 53 (2008)CrossRefGoogle Scholar
35.Mattevi, C., Wirth, C.T., Hofmann, S., Blume, R., Cantoro, M., Ducati, C., Cepek, C., Knop-Gericke, A., Milne, S., Castellarin-Cudia, C., Dolafi, S., Goldoni, A., Schloegl, R., Robertson, J.In situ x-ray photoelectron spectroscopy study of catalyst-support interactions and growth of carbon nanotube forests. J. Phys. Chem. C 112, 12207 (2008)CrossRefGoogle Scholar
36.Meshot, E.R., Hart, A.J.Abrupt self-termination of vertically aligned carbon nanotube growth. Appl. Phys. Lett. 92, 113107 (2008)CrossRefGoogle Scholar
37.Puretzky, A.A., Eres, G., Rouleau, C.M., Ivanov, I.N., Geohegan, D.B.Real-time imaging of vertically aligned carbon nanotube array growth kinetics. Nanotechnology 19, 055605 (2008)CrossRefGoogle Scholar
38.Vinten, P., Marshall, P., Lefebvre, J., Finnie, P.Distinct termination morphologies for vertically aligned carbon nanotube forests. Nanotechnology 21, 035603 (2010)CrossRefGoogle Scholar
39.Yoshida, H., Shimizu, T., Uchiyama, T., Kohno, H., Homma, Y., Takeda, S.Atomic-scale analysis on the role of molybdenum in iron-catalyzed carbon nanotube growth. Nano Lett. 9, 3810 (2009)CrossRefGoogle Scholar
40.Harutyunyan, A.R., Awasthi, N., Jiang, A., Setyawan, W., Mora, E., Tokune, T., Bolton, K., Curtarolo, S.Reduced carbon solubility in Fe nanoclusters and implications for the growth of single-walled carbon nanotubes. Phys. Rev. Lett. 100, 195502 (2008)CrossRefGoogle Scholar
41.Latorre, N., Romeo, E., Cazana, F., Ubieto, T., Royo, C., Villacampa, J.J., Monzon, A.Carbon nanotube growth by catalytic chemical vapor deposition: A phenomenological kinetic model. J. Phys. Chem. C 114, 4773 (2010)CrossRefGoogle Scholar
42.Stadermann, M., Sherlock, S.P., In, J.B., Fornasiero, F., Park, H.G., Artyukhin, A.B., Wang, Y.M., De Yoreo, J.J., Grigoropoulos, C.P., Bakajin, O., Chernov, A.A., Noy, A.Mechanism and kinetics of growth termination in controlled chemical vapor deposition growth of multiwall carbon nanotube arrays. Nano Lett. 9, 738 (2009)CrossRefGoogle Scholar
43.Xiang, R., Yang, Z., Zhang, Q., Luo, G.H., Qian, W.Z., Wei, F., Kadowaki, M., Einarsson, E., Maruyama, S.Growth deceleration of vertically aligned carbon nanotube arrays: Catalyst deactivation or feedstock diffusion controlled? J. Phys. Chem. C 112, 4892 (2008)CrossRefGoogle Scholar
44.Einarsson, E., Murakami, Y., Kadowaki, M., Maruyama, S.Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements. Carbon 46, 923 (2008)CrossRefGoogle Scholar
45.Vinten, P., Lefebvre, J., Finnie, P.Kinetic critical temperature and optimized chemical vapor deposition growth of carbon nanotubes. Chem. Phys. Lett. 469, 293 (2009)CrossRefGoogle Scholar
46.Carver, R.L., Peng, H.Q., Sadana, A.K., Nikolaev, P., Arepalli, S., Scott, C.D., Billups, W.E., Hauge, R.H., Smalley, R.E.A model for nucleation and growth of single wall carbon nanotubes via the HiPcO process: A catalyst concentration study. J. Nanosci. Nanotechnol. 5, 1035 (2005)CrossRefGoogle Scholar
47.Pint, C.L., Nicholas, N., Pheasant, S.T., Duque, J.G., Nicholas, A., Parra-Vasquez, G., Eres, G., Pasquali, M., Hauge, R.H.Temperature and gas pressure effects in vertically aligned carbon nanotube growth from Fe–Mo catalyst. J. Phys. Chem. C 112, 14041 (2008)CrossRefGoogle Scholar
48.Eres, G., Kinkhabwala, A.A., Cui, H.T., Geohegan, D.B., Puretzky, A.A., Lowndes, D.H.Molecular beam-controlled nucleation and growth of vertically aligned single-wall carbon nanotube arrays. J. Phys. Chem. B 109, 16684 (2005)CrossRefGoogle Scholar
49.Zhong, G., Hofmann, S., Yan, F., Telg, H., Warner, J.H., Eder, D., Thomsen, C., Milne, W.I., Robertson, J.Acetylene: A key growth precursor for single-walled carbon nanotube forests. J. Phys. Chem. C 113, 17321 (2009)CrossRefGoogle Scholar
50.Liu, K., Jiang, K.L., Feng, C., Chen, Z., Fan, S.S.A growth mark method for studying growth mechanism of carbon nanotube arrays. Carbon 43, 2850 (2005)CrossRefGoogle Scholar
51.Zhu, L.B., Xu, J.W., Xiao, F., Jiang, H.J., Hess, D.W., Wong, C.P.The growth of carbon nanotube stacks in the kinetics-controlled regime. Carbon 45, 344 (2007)CrossRefGoogle Scholar
52.Pint, C.L., Nicholas, N., Duque, J.G., Parra-Vasquez, A.N.G., Pasquali, M., Hauge, R.Recycling ultrathin catalyst layers for multiple single-walled carbon nanotube array regrowth cycles and selectivity in catalyst activation. Chem. Mater. 21, 1550 (2009)CrossRefGoogle Scholar
53.Hofmann, S., Blume, R., Wirth, C.T., Cantoro, M., Sharma, R., Ducati, C., Havecker, M., Zafeiratos, S., Schnoerch, P., Oestereich, A., Teschner, D., Albrecht, M., Knop-Gericke, A., Schlogl, R., Robertson, J.State of transition metal catalysts during carbon nanotube growth. J. Phys. Chem. C 113, 1648 (2009)CrossRefGoogle Scholar
54.Vitos, L., Ruban, A.V., Skriver, H.L., Kollar, J.The surface energy of metals. Surf. Sci. 411, 186 (1998)CrossRefGoogle Scholar
55.Blonski, S., Garofalini, S.H.Molecular dynamics simulations of alpha-alumina and gamma-alumina surfaces. Surf. Sci. 295, 263 (1993)CrossRefGoogle Scholar
56.Hasegawa, K., Noda, S.Diameter increase in millimeter-tall vertically aligned single-walled carbon nanotubes during growth. Appl. Phys. Express 3, 054103 (2010)CrossRefGoogle Scholar
57.Charlier, J.C., Ebbesen, T.W., Lambin, P.Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys. Rev. B 53, 11108 (1996)CrossRefGoogle Scholar
58.Pint, C.L., Xu, Y.Q., Moghazy, S., Cherukuri, T., Alvarez, N.T., Haroz, E.H., Mahzooni, S., Doorn, S.K., Kono, J., Pasquali, M., Hauge, R.H.Dry contact transfer printing of aligned carbon nanotube patterns and characterization of their optical properties for diameter distribution and alignment. ACS Nano. 4, 1131 (2010)CrossRefGoogle Scholar
59.Ohta, Y., Okamoto, Y., Irle, S., Morokuma, K.Rapid growth of a single-walled carbon nanotube on an iron cluster: Density-functional tight-binding-molecular-dynamics simulations. ACS Nano. 2, 1437 (2008)CrossRefGoogle Scholar
60.Ohta, Y., Okamoto, Y., Irle, S., Morokuma, K.Density-functional tight-binding-molecular-dynamics simulations of SWCNT growth by surface carbon diffusion on an iron cluster. Carbon 47, 1270 (2009)CrossRefGoogle Scholar
61.Yao, Y.G., Feng, C.Q., Zhang, J., Liu, Z.F.“Cloning” of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett. 9, 1673 (2009)CrossRefGoogle Scholar
62.Harutyunyan, A.R., Chen, G.G., Paronyan, T.M., Pigos, E.M., Kuznetsov, O.A., Hewaparakrama, K., Kim, S.M., Zakharov, D., Stach, E.A., Sumanasekera, G.U.Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326, 116 (2009)CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Catalyst and catalyst support morphology evolution in single-walled carbon nanotube supergrowth: Growth deceleration and termination
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Catalyst and catalyst support morphology evolution in single-walled carbon nanotube supergrowth: Growth deceleration and termination
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Catalyst and catalyst support morphology evolution in single-walled carbon nanotube supergrowth: Growth deceleration and termination
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *