Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-15T16:01:38.794Z Has data issue: false hasContentIssue false

Atomistic modeling of the Al–H and Ni–H systems

Published online by Cambridge University Press:  27 June 2011

Won-Seok Ko
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
Jae-Hyeok Shim
Materials/Devices Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
Byeong-Joo Lee*
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea; and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
a)Address all correspondence to this author. e-mail:
Get access


Second nearest-neighbor modified embedded-atom method (MEAM) interatomic potentials for the Al–H and Ni–H binary systems have been developed on the basis of previously developed MEAM potentials of pure Al, Ni, and H. The potentials can describe various fundamental physical properties of the relevant binary alloys (structural, thermodynamic, defect, and dynamic properties of metastable hydrides or hydrogen in face-centered cubic solid solutions) in good agreement with experiments or first-principles calculations. The applicability of the present potentials to atomic level investigations of dynamic behavior of hydrogen atoms in metal membranes is also discussed.

Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Lee, P.D. and Hunt, J.D.: Hydrogen porosity in directional solidified aluminium-copper alloys: In situ observation. Acta Mater. 45, 4155 (1997).CrossRefGoogle Scholar
2.Couper, M.J., Neeson, A.E., and Griffiths, J.R.: Casting defects and the fatigue behaviour of an aluminium casting alloy. Fatigue Fract. Eng. Mater. Struct. 13, 213 (1990).CrossRefGoogle Scholar
3.Major, J.F.: Porosity control and fatigue behavior in A356-T61 aluminum alloy. AFS Trans. 105, 901 (1998).Google Scholar
4.Lee, P.D., Chirazi, A., and See, D.: Modeling microporosity in aluminum-silicon alloys: A review. J. Light Met. 1, 15 (2001).CrossRefGoogle Scholar
5.Carlson, K.D., Lin, Z., and Beckermann, C.: Modeling the effect of finite-rate hydrogen diffusion on porosity formation in aluminum alloys. Metall. Mater. Trans. B 38, 541 (2007).CrossRefGoogle Scholar
6.Felberbaum, M., Landry-Desy, E., Weber, L., and Rappaz, M.: Effective hydrogen diffusion coefficient for solidifying aluminium alloys. Acta Mater. 59, 2302 (2011).CrossRefGoogle Scholar
7.Lynch, S.P.: Hydrogen embrittlement and liquid-metal embrittlement in nickel single crystals. Scr. Metall. 13, 1051 (1979).CrossRefGoogle Scholar
8.Vehoff, H. and Rothe, W.: Gaseous hydrogen embrittlement in FeSi- and Ni-single crystals. Acta Metall. 31, 1781 (1983).CrossRefGoogle Scholar
9.Vehoff, H. and Klameth, H.K.: Hydrogen embrittlement and trapping at crack tips in Ni-single crystals. Acta Metall. 33, 955 (1985).CrossRefGoogle Scholar
10.Lynch, S.P.: A fractographic study of hydrogen-assisted cracking and liquid-metal embrittlement in nickel. J. Mater. Sci. 21, 692 (1986).CrossRefGoogle Scholar
11.Xu, X., Wen, M., Hu, Z., Fukuyama, S., and Yokogawa, K.: Atomistic process on hydrogen embrittlement of a single crystal of nickel by the embedded atom method. Comput. Mater. Sci. 23, 131 (2002).CrossRefGoogle Scholar
12.Wen, M., Xu, X., Omura, Y., Fukuyama, S., and Yokogawa, K.: Modeling of hydrogen embrittlement in single crystal Ni. Comput. Mater. Sci. 30, 202 (2004).CrossRefGoogle Scholar
13.Goltsov, V.A. and Veziroglu, T.N.: From hydrogen economy to hydrogen civilization. Int. J. Hydrogen Energy 26, 909 (2001).CrossRefGoogle Scholar
14.Adhikari, S. and Fernando, S.: Hydrogen membrane separation techniques. Ind. Eng. Chem. Res. 45, 875 (2006).CrossRefGoogle Scholar
15.Uemiya, S.: Brief review of steam reforming using a metal membrane reactor. Top. Catal. 29, 79 (2004).CrossRefGoogle Scholar
16.Sholl, D.S. and Ma, Y.H.: Dense metal membranes for the production of high-purity hydrogen. MRS Bull. 31, 770 (2006).CrossRefGoogle Scholar
17.Ockwig, N.W. and Nenoff, T.M.: Membranes for hydrogen separation. Chem. Rev. 107, 4078 (2007).CrossRefGoogle ScholarPubMed
18.Steward, S.A.: Review of hydrogen isotope permeability through metals. Lawrence Livermore National Laboratory Report, UCRL-53441 (1983).CrossRefGoogle Scholar
19.Nishimura, C., Komaki, M., and Amano, M.: Hydrogen permeation characteristics of vanadium-nickel alloys. Mater. Trans. JIM 32, 501 (1991).CrossRefGoogle Scholar
20.Nishimura, C., Komaki, M., Hwang, S., and Amano, M.: V-Ni alloy membranes for hydrogen purification. J. Alloy. Comp. 330332, 902 (2002).CrossRefGoogle Scholar
21.Zhang, Y., Ozaki, T., Komaki, M., and Nishimura, C.: Hydrogen permeation characteristics of vanadium-aluminium alloys. Scr. Mater. 47, 601 (2002).CrossRefGoogle Scholar
22.Yukawa, H., Teshima, A., Yamashita, D., Ito, S., Yamaguchi, S., and Morinaga, M.: Alloying effects on the hydriding properties of vanadium at low hydrogen pressures. J. Alloy. Comp. 337, 264 (2002).CrossRefGoogle Scholar
23.Ozaki, T., Zhang, Y., Komaki, M., and Nishimura, C.: Preparation of palladium-coated V and V-15Ni membranes for hydrogen purification by electroless plating technique. Int. J. Hydrogen Energy 28, 297 (2003).CrossRefGoogle Scholar
24.Ozaki, T., Zhang, Y., Komaki, M., and Nishimura, C.: Hydrogen permeation characteristics of V-Ni-Al alloys. Int. J. Hydrogen Energy 28, 1229 (2003).CrossRefGoogle Scholar
25.Daw, M.S. and Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
26.Foiles, S.M., Baskes, M.I., and Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983 (1986).CrossRefGoogle ScholarPubMed
27.Ruda, M., Farkas, D., and Abriata, J.: Embedded-atom interatomic potentials for hydrogen in metals and intermetallic alloys. Phys. Rev. B 54, 9765 (1996).CrossRefGoogle ScholarPubMed
28.Angelo, J.E., Moody, N.R., and Baskes, M.I.: Trapping of hydrogen to lattice defects in nickel. Model. Simul. Mater. Sci. Eng. 3, 289 (1995).CrossRefGoogle Scholar
29.Baskes, M.I.: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992).CrossRefGoogle ScholarPubMed
30.Lee, B.J. and Baskes, M.I.: Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62, 8564 (2000).CrossRefGoogle Scholar
31.Lee, B.J., Baskes, M.I., Kim, H., and Cho, Y.K.: Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 64, 184102 (2001).CrossRefGoogle Scholar
32.Rose, J.H., Smith, J.R., Guinea, F., and Ferrante, J.: Universal features of the equation of state of metals. Phys. Rev. B 29, 2963 (1984).CrossRefGoogle Scholar
33.Baskes, M.I.: Determination of modified embedded atom method parameters for nickel. Mater. Chem. Phys. 50, 152 (1997).CrossRefGoogle Scholar
34.Lee, B.J., Shim, J.H., and Baskes, M.I.: Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys. Rev. B 68, 144112 (2003).CrossRefGoogle Scholar
35.Lee, B.J. and Jang, J.W.: A modified embedded-atom method interatomic potential for the Fe-H system. Acta Mater. 55, 6779 (2007).CrossRefGoogle Scholar
36.Manchester, F.D.: Phase Diagrams of Binary Hydrogen Alloys (ASM International, Materials Park, OH, 2000), pp. 412, 147–157.Google Scholar
37.Turley, J.W. and Rinn, H.W.: The crystal structure of aluminum hydride. Inorg. Chem. 8, 18 (1969).CrossRefGoogle Scholar
38.Herley, P.J., Christofferson, O., and Todd, J.A.: Microscopic observations on the thermal decomposition of α-aluminum hydride. J. Solid State Chem. 35, 391 (1980).CrossRefGoogle Scholar
39.Baranowski, B., Hochheimer, H.D., Strössner, K., and Hönle, W.: High pressure x-ray investigation of AlH3 and Al at room temperature. J. Less Common Met. 113, 341 (1985).CrossRefGoogle Scholar
40.Sinke, G.C., Walker, L.C., Oetting, F.L., and Stull, D.R.: Thermodynamic properties of aluminum hydride. J. Chem. Phys. 47, 2759 (1967).CrossRefGoogle Scholar
41.Wolverton, C., Ozoliņš, V., and Asta, M.: Hydrogen in aluminum: First-principles calculations of structure and thermodynamics. Phys. Rev. B 69, 144109 (2004).CrossRefGoogle Scholar
42.Vajeeston, P., Ravindran, P., and Fjellvåg, H.: Novel high pressure phases of β-AlH3: A density-functional study. Chem. Mater. 20, 5997 (2008).CrossRefGoogle Scholar
43.Graetz, J., Chaudhuri, S., Lee, Y., Vogt, T., Muckerman, J.T., and Reilly, J.J.: Pressure-induced structural and electronic changes in α-Al H3. Phys. Rev. B 74, 214114 (2006).CrossRefGoogle Scholar
44.Qiu, C., Olson, G.B., Opalka, S.M., and Anton, D.L.: Thermodynamic evaluation of the Al-H system. J. Phase Equilib. Diff. 25, 20 (2004).CrossRefGoogle Scholar
45.Alefeld, G. and Völkl, J.: Hydrogen in Metals I (Springer-Verlag, Berlin, 1978).CrossRefGoogle Scholar
46.Wayman, M.L. and Smith, G.C.: Hydride formation in nickel-iron alloys. J. Phys. Chem. Solids 32, 103 (1971).CrossRefGoogle Scholar
47.Czarnota, I. and Baranowski, B.: Enthalpy of formation of nickel hydride and deuteride. Bull. Acad. Polon. Sci., Ser. Sci. Chim. 14, 191 (1966).Google Scholar
48.Mueller, W.M., Blackledge, J.P., and Libowitz, G.G.: Metal Hydrides (Academic Press, New York, 1968).Google Scholar
49.Lee, B.J., Ko, W.S., Kim, H.K., and Kim, E.H.: The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations. Calphad 34, 510 (2010).CrossRefGoogle Scholar
50.Wimmer, E.: The growing importance of computations in materials science. Current capabilities and perspectives. Mater. Sci-Pol. 23, 325 (2005).Google Scholar
51.Eichenauer, W., Hattenbach, K., and Pebler, Z.: The solubility of hydrogen in solid and liquid aluminum. Z. Metallkd. 52, 682 (1961).Google Scholar
52.Sugimoto, H. and Fukai, Y.: Solubility of hydrogen in metals under high hydrogen pressures: Thermodynamical calculations. Acta Metall. Mater. 40, 2327 (1992).CrossRefGoogle Scholar
53.Ichimura, M., Katsuta, H., Sasajima, Y., and Imabayashi, M.: Hydrogen and deuterium solubility in aluminum with voids. J. Phys. Chem. Solids 49, 1259 (1988).CrossRefGoogle Scholar
54.Edwards, R.A.H. and Eichenauer, W.: Reversible hydrogen trapping at grain boundaries in superpure aluminum. Scr. metall. 14, 971 (1980).CrossRefGoogle Scholar
55.Ransley, C.E. and Neufeld, H.: The solubility of hydrogen in liquid and solid aluminum. J. Inst. Met. 74, 599 (1948).Google Scholar
56.Hofmann, W. and Maatsch, J.: Solubility of hydrogen in aluminum, lead and zinc melts. Z. Metallkd. 47, 89 (1956).Google Scholar
57.Linderoth, S.: Hydrogen diffusivity in aluminium. Philos. Mag. Lett. 57, 229 (1988).CrossRefGoogle Scholar
58.Birnbaum, H.K., Buckley, C., Zeides, F., Sirois, E., Rozenak, P., Spooner, S., and Lin, J.S.: Hydrogen in aluminum. J. Alloy. Comp. 253254, 260 (1997).CrossRefGoogle Scholar
59.Myers, S.M., Besenbacher, F., and Nørskov, J.K.: Immobilization mechanisms for ion-implanted deuterium in aluminum. J. Appl. Phys. 58, 1841 (1985).CrossRefGoogle Scholar
60.Linderoth, S., Rajainmäki, H., and Nieminen, R.M.: Defect recovery in aluminum irradiated with protons at 20 K. Phys. Rev. B 35, 5524 (1987).CrossRefGoogle ScholarPubMed
61.Young, G.A. and Scully, J.R.: The diffusion and trapping of hydrogen in high purity aluminum. Acta Mater. 46, 6337 (1998).CrossRefGoogle Scholar
62.Ichimura, M. and Imabayashi, M.: Effect of voids on the diffusivity and solubility of hydrogen in aluminum. J. Jpn. Inst. Met. 44, 1045 (1980).CrossRefGoogle Scholar
63.Papp, K. and Kovács-Csetényi, E.: Diffusion of hydrogen in high purity aluminium. Scr. Metall. 15, 161 (1981).CrossRefGoogle Scholar
64.Outlaw, R.A., Peterson, D.T., and Schmidt, F.A.: Diffusion of hydrogen in pure large grain aluminum. Scr. Metall. 16, 287 (1982).CrossRefGoogle Scholar
65.Saitoh, H., Iijima, Y., and Tanaka, H.: Hydrogen diffusivity in aluminium measured by a glow discharge permeation method. Acta Metall. Mater. 42, 2493 (1994).CrossRefGoogle Scholar
66.Hashimoto, E. and Kino, T.: Hydrogen diffusion in aluminium at high temperatures. J. Phys. F: Met. Phys. 13, 1157 (1983).CrossRefGoogle Scholar
67.Lee, S.M. and Lee, J.Y.: The trapping and transport phenomena of hydrogen in nickel. Metall. Trans. A 17, 181 (1986).CrossRefGoogle Scholar
68.Robertson, W.M.: Hydrogen permeation, diffusion and solution in nickel. Z. Metallkd. 64, 436 (1973).Google Scholar
69.Lieser, K.H. and Rinck, G.: The solubility of hydrogen in alloys II. The system nickel-zinc. Z. Elektrochem. 61, 357 (1957).Google Scholar
70.Fukai, Y. and Sugimoto, H.: Enhanced solubility of hydrogen in metals under high pressure: Thermodynamical calculation. Trans. Jpn. Inst. Met. 24, 733 (1983).CrossRefGoogle Scholar
71.Ebisuzaki, Y., Kass, W.J., and O’Keeffe, M.: Diffusion and solubility of hydrogen in single crystals of nickel and nickel-vanadium alloy. J. Chem. Phys. 46, 1378 (1967).CrossRefGoogle Scholar
72.Shapovatov, V.I. and Serdyuk, N.P.: Certain thermodynamic characteristics of the nickel-hydrogen and cobalt-hydrogen systems. Zh. Fiz. Khim. 53, 1250 (1979).Google Scholar
73.Shapovalov, V.I., Poltoratskii, L.M., Trofimenko, V.V., and Serdyuk, N.P.: Phase diagram of a metal-hydrogen system, in Fazorye Ravnovesiya Met. Splavakh, edited by Drits, M.E. (Izd. Nauka, Moscow, 1981), p. 280.Google Scholar
74.Besenbacher, F., Bogh, H., Pisarev, A.A., Puska, M.J., Holloway, S., and Nørskov, J.K.: Interaction of deuterium with lattice defects in nickel. Nucl. Instrum. Methods 4, 374 (1984).CrossRefGoogle Scholar
75.Nørskov, J.K., Besenbacher, F., Bøttiger, J., Nielsen, B.B., and Pisarev, A.A.: Interaction of hydrogen with defects in metals: Interplay between theory and experiment. Phys. Rev. Lett. 49, 1420 (1982).CrossRefGoogle Scholar
76.Yamakawa, K.: Diffusion of deuterium and isotope effect in nickel. J. Phys. Soc. Jpn. 47, 14 (1979).CrossRefGoogle Scholar
77.Katz, L., Guinan, M., and Borg, R.J.: Diffusion of H2, D2, and T2 in single-crystal Ni and Cu. Phys. Rev. B 4, 330 (1971).CrossRefGoogle Scholar
78.Wimmer, E., Wolf, W., Sticht, J., Saxe, P., Geller, C.B., Najafabadi, R., and Young, G.A.: Temperature-dependent diffusion coefficients from ab initio computations: Hydrogen, deuterium, and tritium in nickel. Phys. Rev. B 77, 134305 (2008).CrossRefGoogle Scholar
79.Manninen, M. and Nieminen, R.M.: Spherical solid model for muon and hydrogen in metals. J. Phys. F: Met. Phys. 9, 1333 (1979).CrossRefGoogle Scholar
80.Perrot, F. and Rasolt, M.: Energetics of hydrogen in aluminum. Pys. Rev. B 23, 6534 (1981).CrossRefGoogle Scholar
81.Puska, M.J. and Nieminen, R.M.: Theory of hydrogen and helium impurities in metals. Phys. Rev. B 29, 5382 (1984).CrossRefGoogle Scholar
82.Bugeat, J.P., Chami, A.C., and Ligeon, E.: A study of hydrogen implanted in aluminium. Phys. Lett. A 58, 127 (1976).CrossRefGoogle Scholar
83.Olsen, K.M. and Larkin, C.F.: Room temperature evolution of hydrogen from high-purity nickel. J. Electrochem. Soc. 110, 86 (1963).CrossRefGoogle Scholar
84.Combette, P. and Azou, P.: Hydrogen diffusion in nickel. Mem. Sci. Rev. Metall. 67, 17 (1970).Google Scholar
85.Perkins, G. and Begeal, D.R.: Permeation and diffusion of hydrogen in ceramvar, copper, and ceramvar-copper laminates. Ber. Bunsen Ges. Phys. Chem. 76, 863 (1972).CrossRefGoogle Scholar
86.Robertson, W.M.: Hydrogen permeation, diffusion, and solution in pure nickel and a nickel based superalloy. Ber. Bunsen Ges. Phys. Chem. 76, 825 (1972).CrossRefGoogle Scholar
87.Völkl, J. and Alefeld, G.: Diffusion in solids, in Recent Developments, edited by Nowick, A.S. and Burton, J.J. (Academic Press, New York, 1975), p. 231.Google Scholar
88.Landolt-Börnstein: in Group III: Crystal and Solid State Physics. Chap. 9: The diffusion of H, D and T in solid metals, edited by Madelung, O. (Springer-Verlag, Berlin, 1990), pp. 554569.Google Scholar
89.Christmann, K., Schober, O., Ertl, G., and Neumann, M.: Adsorption of hydrogen on nickel single crystal surfaces. J. Chem. Phys. 60, 4528 (1974).CrossRefGoogle Scholar
90.Kresse, G. and Hafner, J.: First-principles study of the adsorption of atomic H on Ni (111), (100) and (110). Surf. Sci. 459, 287 (2000).CrossRefGoogle Scholar
91.Christmann, K., Behm, R.J., Ertl, G., Van Hove, M.A., and Weinberg, W.H.: Chemisorption geometry of hydrogen on Ni(111): Order and disorder. J. Chem. Phys. 70, 4168 (1979).CrossRefGoogle Scholar