Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-16T01:20:20.414Z Has data issue: false hasContentIssue false

Approaching extremely low thermal conductivity by crystal structure engineering in Mg2Al4Si5O18

Published online by Cambridge University Press:  22 December 2015

Yiran Li
Affiliation:
High-performance Ceramics Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and University of Chinese Academy of Sciences, Beijing 100049, China
Jiemin Wang*
Affiliation:
High-performance Ceramics Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Jingyang Wang*
Affiliation:
High-performance Ceramics Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a)Address all correspondence to this author. e-mail: jywang@imr.ac.cn
Get access

Abstract

One of the challenges in developing a low thermal conductivity material addresses on searching lightweight ceramic without heavy or rare-earth (RE) elements. Mg2Al4Si5O18 interests us for its very low density and complex crystal structure. The first-principle calculations were performed to predict mechanical and lattice thermal conductivity of hexagonal and orthorhombic phases of Mg2Al4Si5O18. According to Debye approximation and the Slack model, the lattice thermal conductivity varies with temperature in 804.6/T and 719.7/T, yielding 2.95 and 2.64 W/(m·K) at room temperature, respectively. The high temperature limits of thermal conductivities are as low as 1.33 and 1.29 W/(m·K). The thermal conductivities of both polymorphs of Mg2Al4Si5O18 are lower than most of RE-containing silicates and zirconates. The present work suggests that Mg2Al4Si5O18 is a promising lightweight ceramic with extremely low thermal conductivity. We also highlight that enhancing complexity of the crystal structure rather than incorporating heavy RE elements may be an alternative wisdom to explore lightweight thermal insulators.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Yanchun Zhou

References

REFERENCES

Clarke, D.R.: Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163164, 67 (2003).CrossRefGoogle Scholar
Sun, L., Liu, B., Wang, J., Wang, J., Zhou, Y., and Hu, Z.: Y4Si2O7N2: A new oxynitride with low thermal conductivity. J. Am. Ceram. Soc. 95(10), 3278 (2012).Google Scholar
Liu, B., Wang, J.Y., Zhou, Y.C., Liao, T., and Li, F.Z.: Theoretical elastic stiffness, structure stability and thermal conductivity of La2Zr2O7 pyrochlore. Acta Mater. 55(9), 2949 (2007).Google Scholar
Feng, J., Xiao, B., Zhou, R., and Pan, W.: Thermal conductivity of rare earth zirconate pyrochlore from first principles. Scr. Mater. 68(9), 727 (2013).CrossRefGoogle Scholar
Zhou, Y. and Liu, B.: Theoretical investigation of mechanical and thermal properties of MPO4 (M=Al, Ga). J. Eur. Ceram. Soc. 33(13–14), 2817 (2013).Google Scholar
Du, A., Wan, C., Qu, Z., and Pan, W.: Thermal conductivity of Monazite-type REPO4 (RE=La, Ce, Nd, Sm, Eu, Gd). J. Am. Ceram. Soc. 92(11), 2687 (2009).Google Scholar
Kingery, W.D., Bowen, H.K., and Unhlmann, D.R.: Introduction to ceramics (2nd ed.) (New York: John Wiley & Sons, Inc., 1976).Google Scholar
Cao, X., Vassen, R., and Stoever, D.: Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24(1), 1 (2004).Google Scholar
Sun, Z., Li, M., and Zhou, Y.: Thermal properties of single-phase Y2SiO5 . J. Eur. Ceram. Soc. 29(4), 551 (2009).Google Scholar
Sun, Z., Zhou, Y., Wang, J., and Li, M.: Thermal properties and thermal shock resistance of γ-Y2Si2O7 . J. Am. Ceram. Soc. 91(8), 2623 (2008).Google Scholar
Xiang, H., Feng, Z., and Zhou, Y.: Dynamical and dielectric properties of MP2O7 (M = Ti, Zr, and Hf): A first-principles investigation. Comput. Mater. Sci. 95, 371 (2014).Google Scholar
Xiang, H., Feng, Z., and Zhou, Y.: Ab initio computations of electronic, mechanical, lattice dynamical and thermal properties of ZrP2O7 . J. Eur. Ceram. Soc. 34(7), 1809 (2014).Google Scholar
Xiang, H., Feng, Z., Li, Z., and Zhou, Y.: Theoretical investigations on mechanical and thermal properties of MSiO4 (M = Zr, Hf). J. Mater. Res. 30(13), 2030 (2015).Google Scholar
Fulmer, J., Lebedev, O.I., Roddatis, V.V., Kaseman, D.C., Sen, S., Dolyniuk, J-A., Lee, K., Olenev, A.V., and Kovnir, K.: Clathrate Ba8Au16P30: The “gold standard” for lattice thermal conductivity. J. Am. Chem. Soc. 135(33), 12313 (2013).Google Scholar
Winkler, B., Dove, M.T., and Leslie, M.: Static lattice energy minimization and lattice dynamics calculations on aluminosilicate minerals. Am. Mineral. 76, 313 (1991).Google Scholar
Mirwald, P.W.: Thermal expansion of anhydrous Mg-cordierite between 25 and 950° C. Phys. Chem. Miner. 7(6), 268 (1981).CrossRefGoogle Scholar
Ohsato, H., Kim, J-S., Cheon, C-I., and Kagomiya, I.: Millimeter-wave dielectrics of indialite/cordierite glass ceramics: Estimating Si/Al ordering by volume and covalency of Si/Al octahedron. J. Ceram. Soc. Jpn. 121(1416), 649 (2013).Google Scholar
Yamuna, A., Honda, S., Sumita, K., Yanagihara, M., Hashimoto, S., and Awaji, H.: Synthesis, sintering and thermal shock resistance estimation of porous cordierite by IR heating technique. Microporous Mesoporous Mater. 85(1–2), 169 (2005).Google Scholar
Camerucci, M.A., Urretavizcaya, G., Castro, M.S., and Cavalieri, A.L.: Electrical properties and thermal expansion of cordierite and cordierite-mullite materials. J. Eur. Ceram. Soc. 21(16), 2917 (2001).Google Scholar
Milberg, M.E. and Blair, H.D.: Thermal expansion of cordierite. J. Am. Ceram. Soc. 60(7–8), 372 (1977).Google Scholar
Evans, D.L., Fischer, G.R., Geiger, J.E., and Martin, F.W.: Thermal expansions and chemical modifications of cordierite. J. Am. Ceram. Soc. 63(11–12), 629 (1980).Google Scholar
Liu, Q., Liu, Z., and Huang, Z.: CuO supported on Al2O3-coated cordierite-honeycomb for SO2 and no removal from flue gas: Effect of acid treatment of the cordierite. Ind. Eng. Chem. Res. 44(10), 3497 (2005).Google Scholar
Dong, Y., Feng, X., Dong, D., Wang, S., Yang, J., Gao, J., Liu, X., and Meng, G.: Elaboration and chemical corrosion resistance of tubular macro-porous cordierite ceramic membrane supports. J. Membr. Sci. 304(1–2), 65 (2007).Google Scholar
Slack, G.A.: The thermal conductivity of nonmetallic crystals. Solid State Phys. 34, 1 (1979).Google Scholar
Ceperley, D.M. and Alder, B.J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45(7), 566 (1980).Google Scholar
Segall, M.D., Philip, J.D.L., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14(11), 2717 (2002).Google Scholar
Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892 (1990).CrossRefGoogle Scholar
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976).Google Scholar
Pfrommer, B.G., Côté, M., Louie, S.G., and Cohen, M.L.: Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131(1), 233 (1997).CrossRefGoogle Scholar
Bellaiche, L. and Vanderbilt, D.: Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B 61(12), 7877 (2000).Google Scholar
Winkler, B., Pickard, C., and Milman, V.: Applicability of a quantum mechanical ‘virtual crystal approximation' to study Al/Si-disorder. Chem. Phys. Lett. 362(3–4), 266 (2002).Google Scholar
Milman, V. and Warren, M.C.: Elasticity of hexagonal BeO. J. Phys.: Condens. Matter 13(2), 241 (2001).Google Scholar
Makovicky, E. and Balic-Zunic, T.: New measure of distortion for coordination polyhedra. Acta Crystallogr., Sect. B 54(6), 766 (1998).Google Scholar
Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A 65(5), 349 (1952).Google Scholar
Nye, J.F.: Physical Properties of Crystals (New York: Oxford University Press, 1985).Google Scholar
Morelli, D., Jovovic, V., and Heremans, J.: Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett. 101(3), 035901 (2008).Google Scholar
Zwanziger, J.W.: Phonon dispersion and Grüneisen parameters of zinc dicyanide and cadmium dicyanide from first principles: Origin of negative thermal expansion. Phys. Rev. B 76(5), 052102 (2007).CrossRefGoogle Scholar
Sanditov, D.S., Mantatov, V.V., Darmaev, M.V., and Sanditov, B.D.: On the Gruneisen parameter for crystals and glasses. Tech. Phys. 54(3), 385 (2009).Google Scholar
Anderson, O.L.: The debye temperature of vitreous silica. J. Phys. Chem. Solids 12(1), 41 (1959).Google Scholar
Liu, B., Wang, J.Y., Li, F.Z., and Zhou, Y.C.: Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T=Ge, Ti, Sn, Zr, Hf) pyrochlore. Acta Mater. 58(13), 4369 (2010).Google Scholar
Leont'ev, K.: O vzaimosvyazi mezhdu uprugimi i teplovymi svoistvami tverdykh tel. Akust. Zh. 47(4), 554 (1981).Google Scholar
Cohen, J.P., Ross, F.K., and Gibbs, G.V.: An X-ray and neutron diffraction study of hydrous low cordierite. Am. Mineral. 62(1–2), 67 (1977).Google Scholar
Meagher, E.P. and Gibbs, G.V.: The polymorphism of cordierite; II, the crystal structure of indialite. Can. Mineral. 15(1), 43 (1977).Google Scholar
Miletich, R., Gatta, G.D., Willi, T., Mirwald, P.W., Lotti, P., Merlini, M., Rotiroti, N., and Loerting, T.: Cordierite under hydrostatic compression: Anomalous elastic behavior as a precursor for a pressure-induced phase transition. Am. Mineral. 99(2–3), 479 (2014).Google Scholar
Mirwald, P.W., Malinowski, M., and Schulz, H.: Isothermal compression of low-cordierite to 30 kbar (25° C). Phys. Chem. Miner. 11(3), 140 (1984).CrossRefGoogle Scholar
Mulliken, R.S.: Electronic population analysis on LCAO–MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J. Chem. Phys. 23(10), 1841 (1955).Google Scholar
Bubeck, C.: Direction dependent mechanical properties of extruded cordierite honeycombs. J. Eur. Ceram. Soc. 29(15), 3113 (2009).Google Scholar
Toohill, K., Siegesmund, S., and Bass, J.D.: Sound velocities and elasticity of cordierite and implications for deep crustal seismic anisotropy. Phys. Chem. Miner. 26(4), 333 (1999).Google Scholar
Vinograd, V.L., Perchuk, L.L., Gerya, T.V., Putnis, A., Winkler, B., and Gale, J.D.:Order/disorder phase transition in cordierite and its possible relationship to the development of symplectite reaction textures in granulites. Petrology 15(5), 427 (2007).Google Scholar
Born, M. and Huang, K.: Dynamical theory of crystal lattices (Oxford: Oxford University Press, 1998).Google Scholar
Ogiwara, T., Noda, Y., Shoji, K., and Kimura, O.: Low temperature sintering of alpha-cordierite ceramics with low thermal expansion using Li2O-Bi2O3 as a sintering additive. J. Ceram. Soc. Jpn. 119(1393), 706 (2011).CrossRefGoogle Scholar
Koepke, J. and Schulz, H.: Single crystal structure investigations under high-pressure of the mineral cordierite with an improved high-pressure cell. Phys. Chem. Miner. 13(3), 165 (1986).CrossRefGoogle Scholar
Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London, Edinburgh Dublin Philos. Mag. J. Sci. 45(367), 823 (1954).Google Scholar
Zener, C.: Elasticity and Anelasticity of Metals (Chicago: University of Chicago Press, 1948).Google Scholar
Ledbetter, H.M.: Elastic properties of zinc: A compilation and a review. J. Phys. Chem. Ref. Data 6(4), 1181 (1977).CrossRefGoogle Scholar
Tritt, T.M.: Thermal Conductivity: Theory, Properties, and Applications (New York: Kluwer Academic/Plenum Publishers, 2004).CrossRefGoogle Scholar
Toberer, E.S., Baranowski, L.L., and Dames, C.: Advances in thermal conductivity. Annu. Rev. Mater. Res. 42(1), 179 (2012).Google Scholar
Luo, Y., Wang, J., Wang, J., Li, J., and Hu, Z.: Theoretical predictions on elastic stiffness and intrinsic thermal conductivities of yttrium silicates. J. Am. Ceram. Soc. 97(3), 945 (2014).Google Scholar
Tian, Z., Sun, L., Wang, J., and Wang, J.: Theoretical prediction and experimental determination of the low lattice thermal conductivity of Lu2SiO5 . J. Eur. Ceram. Soc. 35(6), 1923 (2015).Google Scholar
Luo, Y., Wang, J., Li, J., Hu, Z., and Wang, J.: Theoretical study on crystal structures, elastic stiffness, and intrinsic thermal conductivities of β-, γ-, and δ-Y2Si2O7 . J. Mater. Res. 30(04), 493 (2015).Google Scholar
Toberer, E.S., Zevalkink, A., and Snyder, G.J.: Phonon engineering through crystal chemistry. J. Mater. Chem. 21(40), 15843 (2011).Google Scholar
Roufosse, M. and Klemens, P.G.: Thermal conductivity of complex dielectric crystals. Phys. Rev. B 7(12), 5379 (1973).Google Scholar
Feng, J., Xiao, B., Zhou, R., and Pan, W.: Thermal expansion and conductivity of RE2Sn2O7 (RE=La, Nd, Sm, Gd, Er and Yb) pyrochlores. Scr. Mater. 69(5), 401 (2013).Google Scholar
Liu, Z-G., Ouyang, J-H., Zhou, Y., and Xia, X-L.: Electrical conductivity and thermal expansion of neodymium–ytterbium zirconate ceramics. J. Power Sources 195(10), 3261 (2010).Google Scholar
Xu, Q., Pan, W., Wang, J., Wan, C., Qi, L., Miao, H., Mori, K., and Torigoe, T.: Rare-earth zirconate ceramics with fluorite structure for thermal barrier coatings. J. Am. Ceram. Soc. 89(1), 340 (2006).Google Scholar