Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T03:58:40.712Z Has data issue: false hasContentIssue false

Ocular and cervical vestibular evoked myogenic potentials in response to bone-conducted vibration in patients with probable inferior vestibular neuritis

Published online by Cambridge University Press:  15 May 2012

L Manzari
Affiliation:
MSA ENT Academy Center, Cassino, Italy
A M Burgess
Affiliation:
Vestibular Research Laboratory, School of Psychology, University of Sydney, New South Wales, Australia
I S Curthoys*
Affiliation:
Vestibular Research Laboratory, School of Psychology, University of Sydney, New South Wales, Australia
*
Address for correspondence: Dr Ian S Curthoys, Vestibular Research Laboratory, School of Psychology, A18, University of Sydney, Sydney, NSW, Australia 2006 Fax: +61 2 9036 5223 E-mail: ianc@psych.usyd.edu.au

Abstract

Background and aims:

Previous evidence shows that the n10 component of the ocular vestibular evoked myogenic potential indicates utricular function, while the p13 component of the cervical vestibular evoked myogenic potential indicates saccular function. This study aimed to assess the possibility of differential utricular and saccular function testing in the clinic, and whether loss of saccular function affects utricular response.

Methods:

Following vibration conduction from the mid-forehead at the hairline, the ocular n10 component was recorded by surface electromyograph electrodes beneath both eyes, while the cervical p13–n23 component was recorded by surface electrodes over the tensed sternocleidomastoid muscles.

Results:

Fifty-nine patients were diagnosed with probable inferior vestibular neuritis, as their cervical p13–n23 component was asymmetrical (i.e. reduced or absent on the ipsilesional side), while their ocular n10 component was symmetrical (i.e. normal beneath the contralesional eye).

Conclusion:

The sense organ responsible for the cervical and the ocular vestibular evoked myogenic potentials cannot be the same, as one response was normal while the other was not. Reduced or absent saccular function has no detectable effect on the ocular n10 component. On vibration stimulation, the ocular n10 component indicates utricular function and the cervical p13–n23 component indicates saccular function.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Iwasaki, S, McGarvie, LA, Halmagyi, GM, Burgess, AM, Kim, J, Colebatch, JG et al. Head taps evoke a crossed vestibulo-ocular reflex. Neurology 2007;68:1227–9CrossRefGoogle ScholarPubMed
2Iwasaki, S, Smulders, YE, Burgess, AM, McGarvie, LA, MacDougall, HG, Halmagyi, GM et al. Ocular vestibular evoked myogenic potentials to bone conducted vibration of the midline forehead at Fz in healthy subjects. Clin Neurophysiol 2008;119:2135–47CrossRefGoogle ScholarPubMed
3Curthoys, IS, Kim, J, McPhedran, SK, Camp, AJ. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig. Exp Brain Res 2006;175:256–67CrossRefGoogle ScholarPubMed
4Curthoys, IS, Vulovic, V. Vestibular primary afferent responses to sound and vibration in the guinea pig. Exp Brain Res 2011;210:347–52CrossRefGoogle ScholarPubMed
5Iwasaki, S, Smulders, YE, Burgess, AM, McGarvie, LA, MacDougall, HG, Halmagyi, GM et al. Ocular vestibular evoked myogenic potentials in response to bone-conducted vibration of the midline forehead at Fz. A new indicator of unilateral otolithic loss. Audiol Neurotol 2008;13:396404CrossRefGoogle ScholarPubMed
6Manzari, L, Burgess, AM, Curthoys, IS. Effect of bone-conducted vibration of the midline forehead (Fz) in unilateral vestibular loss (uVL). Evidence for a new indicator of unilateral otolithic function. Acta Otorhinolaryngol Ital 2010;30:175–81Google ScholarPubMed
7Iwasaki, S, Murofushi, T, Chihara, Y, Ushio, M, Suzuki, M, Curthoys, I et al. Ocular vestibular evoked myogenic potentials to bone-conducted vibration in vestibular schwannomas. Otol Neurotol 2010;31:147–52CrossRefGoogle ScholarPubMed
8Suzuki, JI, Tokumasu, K, Goto, K. Eye movements from single utricular nerve stimulation in the cat. Acta Otolaryngol 1969;68:350–62CrossRefGoogle ScholarPubMed
9Rosengren, SM, Todd, NPM, Colebatch, JG. Vestibular-evoked extraocular potentials produced by stimulation with bone-conducted sound. Clin Neurophysiol 2005;116:1938–48CrossRefGoogle ScholarPubMed
10Chihara, Y, Iwasaki, S, Ushio, M, Murofushi, T. Vestibular-evoked extraocular potentials by air-conducted sound: another clinical test for vestibular function. Clin Neurophysiol 2007;118:2745–51CrossRefGoogle ScholarPubMed
11Chihara, Y, Iwasaki, S, Ushio, M, Fujimoto, C, Kashio, A, Kondo, K et al. Ocular vestibular-evoked myogenic potentials (oVEMPs) require extraocular muscles but not facial or cochlear nerve activity. Clin Neurophysiol 2009;120:581–7CrossRefGoogle ScholarPubMed
12Yang, T-H, Liu, S-H, Wang, S-J, Young, Y-H. An animal model of ocular vestibular-evoked myogenic potential in guinea pigs. Exp Brain Res 2010;205:145–52CrossRefGoogle ScholarPubMed
13Halmagyi, GM, Yavor, RA, Colebatch, JG. Tapping the head activates the vestibular system: a new use for the clinical reflex hammer. Neurology 1995;45:1927–9CrossRefGoogle ScholarPubMed
14Colebatch, JG, Halmagyi, GM, Skuse, NF. Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry 1994;57:190–7CrossRefGoogle ScholarPubMed
15Rosengren, SM, Welgampola, MS, Colebatch, JG. Vestibular evoked myogenic potentials: past, present and future. Clin Neurophysiol 2010;121:636–51CrossRefGoogle ScholarPubMed
16Curthoys, IS. A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli. Clin Neurophysiol 2010;121:132–44CrossRefGoogle ScholarPubMed
17de Burlet, HM. On the innervation of the saccular macula in mammals [In German]. Anat Anzeig 1924;58:2632Google Scholar
18Halmagyi, GM, Aw, ST, Karlberg, M, Curthoys, IS, Todd, MJ. Inferior vestibular neuritis. Ann N Y Acad Sci 2002;956:306–13CrossRefGoogle ScholarPubMed
19Halmagyi, GM, Weber, KP, Curthoys, IS. Vestibular function after acute vestibular neuritis. Restor Neurol Neurosci 2010;28:3746Google ScholarPubMed
20Aw, ST, Fetter, M, Cremer, PD, Karlberg, M, Halmagyi, GM. Individual semicircular canal function in superior and inferior vestibular neuritis. Neurology 2001;57:768–74CrossRefGoogle ScholarPubMed
21Fetter, M, Dichgans, J. Vestibular neuritis spares the inferior division of the vestibular nerve. Brain 1996;119:755–63CrossRefGoogle ScholarPubMed
22Goebel, JA, O'Mara, W, Gianoli, G. Anatomic considerations in vestibular neuritis. Otol Neurotol 2001;22:512–8CrossRefGoogle ScholarPubMed
23Murofushi, T, Halmagyi, GM, Yavor, RA, Colebatch, JG. Absent vestibular evoked myogenic potentials in vestibular neurolabyrinthitis. An indicator of inferior vestibular nerve involvement? Arch Otolaryngol Head Neck Surg 1996;122:845–8CrossRefGoogle ScholarPubMed
24Monstad, P, Økstad, S, Mygland, A. Inferior vestibular neuritis: 3 cases with clinical features of acute vestibular neuritis, normal calorics but indications of saccular failure. BMC Neurol 2006;6:45CrossRefGoogle ScholarPubMed
25Strupp, M, Brandt, T. Vestibular neuritis. Adv Otorhinolaryngol 1999;55:111–36Google ScholarPubMed
26Halmagyi, GM, Curthoys, IS. A clinical sign of canal paresis. Arch Neurol 1988;45:737–9CrossRefGoogle ScholarPubMed
27Iwasaki, S, Chihara, Y, Smulders, Y, Burgess, AM, Halmagyi, GM, Curthoys, IS et al. The role of the utricular macula and the superior vestibular nerve in the generation of ocular vestibular-evoked myogenic potentials to bone conducted vibration at Fz. Clin Neurophysiol 2009;120:588–93CrossRefGoogle Scholar
28Manzari, L, Tedesco, AR, Burgess, AM, Curthoys, IS. Ocular vestibular-evoked myogenic potentials to bone conducted vibration in superior vestibular neuritis show utricular function. Otolaryngol Head Neck Surg 2010;143:274–80CrossRefGoogle ScholarPubMed
29Curthoys, IS, Manzari, L. Evidence missed: ocular vestibular-evoked myogenic potential and cervical vestibular-evoked myogenic potential differentiate utricular from saccular function. Otolaryngol Head Neck Surg 2011;144:751–2CrossRefGoogle ScholarPubMed
30Uchino, Y, Sasaki, M, Sato, H, Bai, R, Kawamoto, E. Otolith and canal integration on single vestibular neurons in cats. Exp Brain Res 2005;164:271–85CrossRefGoogle ScholarPubMed
31Cremer, PD, Halmagyi, GM, Aw, ST, Curthoys, IS, McGarvie, LA, Todd, MJ et al. Semicircular canal plane head impulses detect absent function of individual semicircular canals. Brain 1998;121:699716CrossRefGoogle ScholarPubMed
32MacDougall, HG, Weber, KP, McGarvie, LA, Halmagyi, GM, Curthoys, IS. The video head impulse test: diagnostic accuracy in peripheral vestibulopathy. Neurology 2009;73:1134–41CrossRefGoogle ScholarPubMed
33Manzari, L, Burgess, AM, Curthoys, IS. Dissociation between cVEMP and oVEMP responses: different vestibular origins of each VEMP? Eur Arch Otorhinolaryngol 2010;267:1487–9CrossRefGoogle ScholarPubMed