Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T00:19:34.394Z Has data issue: false hasContentIssue false

CGRP-immunoreactive cells supplying laryngeal sensory nerve fibres in the cat's nodose ganglion

Published online by Cambridge University Press:  29 June 2007

Yasumusa Tanaka*
Affiliation:
Kurume, Japan
Yoshikazu Yoshida
Affiliation:
Kurume, Japan
Minoru Hirano
Affiliation:
Kurume, Japan
*
Yasumasa Tanaka, M.D., Department of Otorhinolaryngology and Head and Neck Surgery, School of Medicine, Kurume University, 67 Asahimachi, Kurume 830, Japan. Fax: 942-37-1200.

Abstract

Through a combination of retrograde staining by wheat germ agglutinin (WGA) and immunohistochemistry, calcitonin gene-related peptide (CGRP)-reactive sensory neurons projecting from the laryngeal mucosa were detected in the feline nodose ganglion. The size of the CGRP-immunoreactive cell which was regarded as a laryngeal sensory neuron, was about 60 ±m in diameter: the shape of the immunoreactive laryngeal sensory neuron was unipolar. CGRP-reacted laryngeal sensory cells were found in the rostral part of the nodose ganglion extending to the middle part. They aggregated in the most rostral part, were sparse in other parts and were approximately 50 per cent of WGA-reactive laryngeal sensory neurons in number. Our results suggest that this neurotransmitter might play an important role in laryngeal peripheral sensory innervation.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cadieux, A., Springall, D. R., Mulderry, P. K., Rodrigo, J., Ghatei, M. A., Terenghi, G., Bloom, S. R., Polak, J. M. (1986) Occurrence, distribution and ontogeny of CGRP-immunoreactivity in the rat lower respiratory tract: effect of capsaicin treatment and surgical denervations. Neuroscience 19: 605627.CrossRefGoogle ScholarPubMed
Chery-Croze, S., Bosshard, A., Martin, H., Cuber, J. C., Charnay, Y., Chayvialle, J. A. (1988) Peptide immunocytochemistry in afferent neurons from lower gut in rats. Peptides 9: 873881.CrossRefGoogle ScholarPubMed
Dey, R. D., Altemus, J. B., Zervos, I., Hoffpauir, J. (1990) Origin and colocalization of CGRP- and SP-reactive nerves in cat airway epithelium. Journal of Applied Physiology 68: 770778.CrossRefGoogle ScholarPubMed
Helke, C. J., Hill, K. M. (1988) Immunohistochemical study of neuropeptides in vagal and glossopharyngeal afferent neurons in the rat. Neuroscience 26: 539551.CrossRefGoogle ScholarPubMed
Helke, C. J., Niederer, A. J. (1990) Studies on the coexistence of substance P with the putative transmitters in the nodose and petrosal ganglia. Synapse 5: 144151.CrossRefGoogle ScholarPubMed
Ishida-Yamamoto, A., Tohyama, M. (1989) Calcitonin gene-related peptide in the nervous tissue. Progress in Neurobiology 33: 335386.CrossRefGoogle ScholarPubMed
Kawano, H., Daikoku, S. (1987) Functional topography of the rat hypothalamic dopamine neuron systems: retrograde tracing and immunohistochemical study. Journal of Comparative Neurology 265: 242253.CrossRefGoogle ScholarPubMed
Kawano, H., Daikoku, S. (1989) Possible participation of vagus nerve in the regulation of ovarian function. Biomedical Research 10 (Suppl 3)Google Scholar
Koizumi, H. (1953) On sensory innervation of larynx in dog. Tohoku Journal of Experimental Medicine 58: 199210.CrossRefGoogle ScholarPubMed
König, W. F.von Leden, H. (1961) The peripheral nervous system of the human larynx. Part I. The mucous membrane. Archives of Otolaryngology 73: 114.CrossRefGoogle Scholar
Lechan, R. M., Nestler, J. L., Jacobson, S. (1981) Immunohistochemical localization of retrogradely and anterogradely transported wheat germ agglutinin (WGA) within the central nervous system of the rat: application to immunostaining of a second antigen within the same neuron. Journal of Histochemistry and Cytochemistry 29: 12551262.CrossRefGoogle ScholarPubMed
Lundberg, J. M., Mauling, C.-R., Hökfelt, T. (1988) Airways, oral cavity and salivary glands: classical transmitters and peptides in sensory and autonomic motor neurons. In Handbook of chemical neuroanatomy. (Björklund, A., Hökfelt, T., eds.) Vol. 6. The peripheral nervous system. Elsevier, Amsterdam, New York, Oxford.Google Scholar
Matsumoto, K. (1950) Innervation especially the sensory innervation of the laryngeal mucous membrane except the epiglottis. Tohoku Medical Journal 45: 1118.Google Scholar
Rodrigo, J., Polak, J. M., Fernandez, L., Ghatei, M. A., Mulolerry, P., Bloom, S. R. (1985) Calcitonin gene-related peptide immunoreactive sensory and motor nerves of the rat, cat and monkey esophagus. Gastroenterology 88: 441451.CrossRefGoogle Scholar
Tanaka, Y., Yoshida, Y., Hirano, M., Morimoto, M., Kanaseki, T. (1993) Distribution of SP- and CGRP-immunoreactivity in the cat's larynx. Journal of Laryngology and Otology 107: 522527.CrossRefGoogle ScholarPubMed
Tanaka, Y., Yoshida, Y., Saitou, T., Hirano, M., Morimoto, M., Kanaseki, T. (1990) The sensory nerve fibres in the larynx of cats. The Larynx Japan 2: 3343.CrossRefGoogle Scholar
Terenghi, G., Polak, J.M., Rodrigo, J., Mulderry, P. K., Bloom, S. R. (1986) Calcitonin gene-related peptide-immunoreactive nerves in the tongue, epiglottis and pharynx of the rat: occurrence, distribution and origin. Brain Research 365: 14.CrossRefGoogle ScholarPubMed
Yoshida, Y., Tanaka, Y., Mitsumasu, T., Hirano, M., Kanaseki, T. (1986) Peripheral course and intramucosal distribution of the laryngeal sensory nerve fibres of cats. Brain Research Bulletin 17: 95105.CrossRefGoogle ScholarPubMed
Yoshida, Y., Saito, T., Tanaka, Y., Hirano, M., Morimoto, M., Kanaseki, T. (1989) Laryngeal sensory innervation: origins of sensory nerve fibres in the nodose ganglion of the cat. Journal of Voice 3: 314320.CrossRefGoogle Scholar