Skip to main content Accessibility help
Hostname: page-component-544b6db54f-d2wc8 Total loading time: 0.451 Render date: 2021-10-19T19:43:19.391Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Measuring antibiotic levels and their relationship with the microbiome in chronic rhinosinusitis

Published online by Cambridge University Press:  07 October 2019

J Siu
Department of Surgery, University of Auckland, New Zealand
M D Tingle
Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand
R G Douglas*
Department of Surgery, University of Auckland, New Zealand
Author for correspondence: Prof Richard George Douglas Department of Surgery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand E-mail: Fax: +64 9 377 9656
Get access



The evidence supporting the efficacy of antibiotic therapy in the treatment of chronic rhinosinusitis is not compelling. A limited number of studies show that the changes in the nasal microbiome in patients following drug therapy are unpredictable and variable. The evidence for the impact of oral antibiotics on the gut microbiota is stronger, possibly as a result of differences in drug distribution to various sites around the body. There are few studies on sinus mucosal and mucus levels of oral antibiotics used in the treatment of chronic rhinosinusitis. The distribution dependent effects of antibiotics on the sinonasal microbiome is unclear.


This review highlights that relative drug concentrations and their efficacy on microbiota at different sites is an important subject for future studies investigating chronic rhinosinusitis.

Review Articles
Copyright © JLO (1984) Limited, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Prof R G Douglas takes responsibility for the integrity of the content of the paper


1Wallwork, B, Coman, W, Mackay-Sim, A, Greiff, L, Cervin, A. A double-blind, randomized, placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis. Laryngoscope 2006;116:189–93CrossRefGoogle ScholarPubMed
2Stewart, PS, Costerton, JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001;358:135–8CrossRefGoogle ScholarPubMed
3Kennedy, J, Borish, L. Chronic rhinosinusitis and antibiotics: the good, the bad, and the ugly. Am J Rhinol Allergy 2013;27:467–72CrossRefGoogle ScholarPubMed
4Zhang, N, Van Zele, T, Perez-Novo, C, Van Bruaene, N, Holtappels, G, DeRuyck, N et al. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease. J Allergy Clin Immunol 2008;122:961–8CrossRefGoogle ScholarPubMed
5Foreman, A, Holtappels, G, Psaltis, AJ, Jervis-Bardy, J, Field, J, Wormald, PJ et al. Adaptive immune responses in Staphylococcus aureus biofilm-associated chronic rhinosinusitis. Allergy 2011;66:1449–56CrossRefGoogle ScholarPubMed
6Van Zele, T, Gevaert, P, Holtappels, G, Beule, A, Wormald, PJ, Mayr, S et al. Oral steroids and doxycycline: two different approaches to treat nasal polyps. J Allergy Clin Immunol 2010;125:1069–76.e4CrossRefGoogle ScholarPubMed
7Hoggard, M, Biswas, K, Zoing, M, Mackenzie B, Wagner, Taylor, MW, Douglas, RG. Evidence of microbiota dysbiosis in chronic rhinosinusitis. Int Forum Allergy Rhinol 2017;7:230–9CrossRefGoogle ScholarPubMed
8Wagner Mackenzie, B, Waite, DW, Hoggard, M, Douglas, RG, Taylor, MW, Biswas, K. Bacterial community collapse: a meta-analysis of the sinonasal microbiota in chronic rhinosinusitis. Environ Microbiol 2017;19:381–92CrossRefGoogle ScholarPubMed
9Lee, JT, Frank, DN, Ramakrishnan, V. Microbiome of the paranasal sinuses: update and literature review. Am J Rhinol Allergy 2016;30:316CrossRefGoogle ScholarPubMed
10Antunes, MB, Feldman, MD, Cohen, NA, Chiu, AG. Dose-dependent effects of topical tobramycin in an animal model of Pseudomonas sinusitis. Am J Rhinol Allergy 2007;21:423–7CrossRefGoogle Scholar
11Lim, M, Citardi, MJ, Leong, JL. Topical antimicrobials in the management of chronic rhinosinusitis: a systematic review. Am J Rhinol Allergy 2008;22:381–9CrossRefGoogle ScholarPubMed
12Ha, KR, Psaltis, AJ, Butcher, AR, Wormald, PJ, Tan, LW. In vitro activity of mupirocin on clinical isolates of Staphylococcus aureus and its potential implications in chronic rhinosinusitis. Laryngoscope 2008;118:535–40CrossRefGoogle ScholarPubMed
13Legent, F, Bordure, P, Beauvillain, C, Berche, P. A double-blind comparison of ciprofloxacin and amoxycillin/clavulanic acid in the treatment of chronic sinusitis. Chemotherapy 1994;40(suppl 1):815CrossRefGoogle ScholarPubMed
14Namyslowski, G, Misiolek, M, Czecior, E, Malafiej, E, Orecka, B, Namyslowski, P et al. Comparison of the efficacy and tolerability of amoxycillin/clavulanic acid 875 mg b.i.d. with cefuroxime 500 mg b.i.d. in the treatment of chronic and acute exacerbation of chronic sinusitis in adults. J Chemother 2002;14:508–17CrossRefGoogle ScholarPubMed
15Sydnor, TA Jr, Scheld, WM, Gwaltney, J Jr, Nielsen, RW, Huck, W, Therasse, DG. Loracarbef (LY 163892) vs amoxicillin/clavulanate in bacterial maxillary sinusitis. Ear Nose Throat J 1992;71:225–32CrossRefGoogle ScholarPubMed
16Orlandi, RR, Kingdom, TT, Hwang, PH, Smith, TL, Alt, JA, Baroody, FM et al. International Consensus Statement on Allergy and Rhinology: Rhinosinusitis. Int Forum Allergy Rhinol 2016;6(suppl 1):S22209Google Scholar
17Suzuki, H, Shimomura, A, Ikeda, K, Furukawa, M, Oshima, T, Takasaka, T. Inhibitory effect of macrolides on interleukin-8 secretion from cultured human nasal epithelial cells. Laryngoscope 1997;107:1661–6CrossRefGoogle ScholarPubMed
18Pynnonen, MA, Venkatraman, G, Davis, GE. Macrolide therapy for chronic rhinosinusitis: a meta-analysis. Otolaryngol Head Neck Surg 2013;148:366–73CrossRefGoogle ScholarPubMed
19Ambrose, PG, Anon, JB, Bhavnani, SM, Okusanya, OO, Jones, RN, Paglia, MR et al. Use of pharmacodynamic endpoints for the evaluation of levofloxacin for the treatment of acute maxillary sinusitis. Diagn Microbiol Infect Dis 2008;61:132010.1016/j.diagmicrobio.2008.01.010CrossRefGoogle ScholarPubMed
20Ambrose, PG, Anon, JB, Owen, JS, VanWart, S, McPhee, ME, Bhavnani, SM et al. Use of pharmacodynamic end points in the evaluation of gatifloxacin for the treatment of acute maxillary sinusitis. Clin Infect Dis 2004;38:1513–20CrossRefGoogle ScholarPubMed
21Axelsson, A, Brorso, JE. Concentration of antibiotics in sinus secretions. Doxycycline and spiramycin. Ann Otol Rhinol Laryngol 1973;82:44–810.1177/000348947308200111CrossRefGoogle ScholarPubMed
22Cherrier, P, Tod, M, Gros, VL, Petitjean, O, Brion, N, Chatelin, A. Cefotiam concentrations in the sinus fluid of patients with chronic sinusitis after administration of cefotiam hexetil. Eur J Clin Microbiol Infect Dis 1993;12:211–1510.1007/BF01967115CrossRefGoogle ScholarPubMed
23Dewever, M. Determination of roxithromycin concentration in the mucosa of the maxillary sinus. Br J Clin Pract 1988;42(suppl 55):81Google Scholar
24Dinis, PB, Monteiro, MC, Martins, ML, Silva, N, Morais, JG. Sinus tissue concentration of moxifloxacin after a single oral dose. Ann Otol Rhinol Laryngol 2004;113:142–6CrossRefGoogle ScholarPubMed
25Dinis, PB, Monteiro, MC, Martins, ML, Silva, N, Gomes, A. Sinus tissue pharmacokinetics after oral administration of amoxicillin/clavulanic acid. Laryngoscope 2000;110:1050–5CrossRefGoogle ScholarPubMed
26Ehnhage, A, Rautiainen, M, Fang, AF, Sanchez, SP. Pharmacokinetics of azithromycin in serum and sinus fluid after administration of extended-release and immediate-release formulations in patients with acute bacterial sinusitis. Int J Antimicrob Agents 2008;31:561–6CrossRefGoogle ScholarPubMed
27Eneroth, CM, Lundberg, C, Wretlind, B. Antibiotic concentrations in maxillary sinus secretions and in the sinus mucosa. Chemotherapy 1975;21(suppl 1):17CrossRefGoogle ScholarPubMed
28Fang, AF, Palmer, JN, Chiu, AG, Blumer, JL, Crownover, PH, Campbell, MD et al. Pharmacokinetics of azithromycin in plasma and sinus mucosal tissue following administration of extended-release or immediate-release formulations in adult patients with chronic rhinosinusitis. Int J Antimicrob Agents 2009;34:6771CrossRefGoogle ScholarPubMed
29Fraschini, F, Scaglione, F, Pintucci, G, Maccarinelli, G, Dugnani, S, Demartini, G. The diffusion of clarithromycin and roxithromycin into nasal mucosa, tonsil and lung in humans. J Antimicrob Chemother 1991;27(suppl A):61–5CrossRefGoogle ScholarPubMed
30Gehanno, P, Darantière, S, Dubreuil, C, Chobaut, JC, Bobin, S, Pages, JC et al. A prospective, multicentre study of moxifloxacin concentrations in the sinus mucosa tissue of patients undergoing elective surgery of the sinus. J Antimicrob Chemother 2002;49:821–6CrossRefGoogle ScholarPubMed
31Gnarpe, H, Lundberg, C. Preliminary report. L-phase organisms in maxillary sinus secretions. Scand J Infect Dis 1971;3:257–9CrossRefGoogle ScholarPubMed
32Kuehnel, TS, Schurr, C, Lotter, K, Kees, F. Penetration of telithromycin into the nasal mucosa and ethmoid bone of patients undergoing rhinosurgery for chronic sinusitis. J Antimicrob Chemother 2005;44:591–4CrossRefGoogle Scholar
33Liss, RH, Norman, JC. Visualization of doxycycline in lung tissue and sinus secretions by fluorescent techniques. Chemotherapy 1975;21(suppl 1):2735CrossRefGoogle ScholarPubMed
34Lundberg, C, Gullers, K, Malmborg, AS. Antibiotics in sinus secretions. Lancet 1968;2:107–8CrossRefGoogle Scholar
35Margaritis, VK, Ismailos, GS, Naxakis, SS, Mastronikolis, NS, Goumas, PD. Sinus fluid penetration of oral clarithromycin and azithromycin in patients with acute rhinosinusitis. Am J Rhinol 2007;21:574–8CrossRefGoogle ScholarPubMed
36Pea, F, Marioni, G, Pavan, F, Staffieri, C, Bottin, R, Staffieri, A et al. Penetration of levofloxacin into paranasal sinuses mucosa of patients with chronic rhinosinusitis after a single 500 mg oral dose. Pharmacol Res 2007;55:3841CrossRefGoogle ScholarPubMed
37Stoeckel, K, Harell, M, Dan, M. Penetration of cefetamet pivoxil and cefuroxime axetil into the maxillary sinus mucosa at steady state. Antimicrob Agents Chemother 1996;40:780–3CrossRefGoogle ScholarPubMed
38Tolsdorff, P. Penetration of ofloxacin into nasal tissues. Infection 1993;21:6670CrossRefGoogle ScholarPubMed
39Langdon, A, Crook, N, Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 2016;8:39CrossRefGoogle ScholarPubMed
40Jakobsson, HE, Jernberg, C, Andersson, AF, Sjolund-Karlsson, M, Jansson, JK, Engstrand, L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 2010;5:e9836CrossRefGoogle ScholarPubMed
41Zaura, E, Brandt, BW, Teixeira de Mattos, MJ, Buijs, MJ, Caspers, MP, Rashid, MU et al. Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. MBio 2015;6:e0169315CrossRefGoogle ScholarPubMed
42Periti, P, Mazzei, T, Mini, E, Novelli, A. Clinical pharmacokinetic properties of the macrolide antibiotics. Effects of age and various pathophysiological states (Part I). Clin Pharmacokinet 1989;16:193214CrossRefGoogle Scholar
43Agwuh, KN, MacGowan, A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 2006;58:256–65CrossRefGoogle ScholarPubMed
44Mouton, JW, Theuretzbacher, U, Craig, WA, Tulkens, PM, Derendorf, H, Cars, O. Tissue concentrations: do we ever learn? J Antimicrob Chemother 2008;61:235–7CrossRefGoogle ScholarPubMed
45US Food and Drug Administration. Bioanalytical method validation guidance for industry. In: [29 August 2018]Google Scholar
46Serralheiro, A, Alves, G, Falcao, AC. Bioanalysis of small-molecule drugs in nasal and paranasal tissues and secretions: current status and perspectives. Cent Eur J Chem 2012;10:686702Google Scholar
47Bimazubute, MA, Rozet, E, Dizier, I, Gustin, P, Hubert, P, Crommen, J et al. Liquid chromatographic determination of enrofloxacin in nasal secretions and plasma of healthy pigs using restricted access material for on-line sample clean-up. J Chromatogr A 2007;1189:456–66CrossRefGoogle ScholarPubMed
48Levine, JM, D'Antonio, CM. Elton revisited: a review of evidence linking diversity and invasibility. Oikos 1999;87:1526CrossRefGoogle Scholar
49Ramakrishnan, VR, Hauser, LH, Feazel, LM, Ir, D, Robertson, CE, Frank, DN. Sinus microbiota varies among chronic rhinosinusitis phenotypes and predicts surgical outcome. J Allergy Clin Immunol 2015;136:334–4210.1016/j.jaci.2015.02.008CrossRefGoogle ScholarPubMed
50Turnbaugh, PJ, Ley, RE, Hamady, M. The human microbiome project. Nature 2007;449:804–1010.1038/nature06244CrossRefGoogle ScholarPubMed
51Liu, CM, Soldanova, K, Nordstrom, L, Dwan, MG, Moss, OL, Contente-Cuomo, TL et al. Medical therapy reduces microbiota diversity and evenness in surgically recalcitrant chronic rhinosinusitis. Int Forum Allergy Rhinol 2013;3:775–8110.1002/alr.21195CrossRefGoogle ScholarPubMed
52Liu, CM, Kohanski, MA, Mendiola, M. Impact of saline irrigation and topical corticosteroids on the postsurgical sinonasal microbiota. Int Forum Allergy Rhinol 2015;5:185–90CrossRefGoogle ScholarPubMed
53Jain, R, Hoggard, M, Zoing, M, Jiang, Y, Biswas, K, Taylor, MW et al. The effect of medical treatments on the bacterial microbiome in patients with chronic rhinosinusitis: a pilot study. Int Forum Allergy Rhinol 2018;8:890–9CrossRefGoogle Scholar
54Cleland, EJ, Bassiouni, A, Vreugde, S, Wormald, PJ. The bacterial microbiome in chronic rhinosinusitis: richness, diversity, postoperative changes, and patient outcomes. Am J Rhinol Allergy 2015;30:3743CrossRefGoogle Scholar
55Fokkens, WJ, Lund, VJ, Mullol, J, Bachert, C, Alobid, I, Baroody, F et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology 2012;50:11210.4193/Rhino50E2CrossRefGoogle ScholarPubMed
56Hauser, LJ, Ir, D, Kingdom, TT, Robertson, CE, Frank, DN, Ramakrishnan, VR. Investigation of bacterial repopulation after sinus surgery and perioperative antibiotics. Int Forum Allergy Rhinol 2015;6:3440CrossRefGoogle ScholarPubMed
57Shehab, N, Patel, PR, Srinivasan, A, Budnitz, DS. Emergency department visits for antibiotic-associated adverse events. Clin Infect Dis 2008;47:735–43CrossRefGoogle ScholarPubMed
58Kiguba, R, Karamagi, C, Bird, S. Antibiotic-associated suspected adverse drug reactions among hospitalized patients in Uganda: a prospective cohort study. Pharmacol Res Perspect 2017;5:e00298CrossRefGoogle ScholarPubMed
59Korpela, K, Salonen, A, Virta, LJ, Kekkonen, RA, Forslund, K, Bork, P et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun 2016;7:10410CrossRefGoogle ScholarPubMed
60Raymond, F, Deraspe, M, Boissinot, M, Bergeron, MG, Corbeil, J. Partial recovery of microbiomes after antibiotic treatment. Gut Microbes 2016;7:428–34CrossRefGoogle ScholarPubMed
61Angelakis, E, Million, M, Kankoe, S, Lagier, JC, Armougom, F, Giorgi, R et al. Abnormal weight gain and gut microbiota modifications are side effects of long-term doxycycline and hydroxychloroquine treatment. Antimicrob Agents Chemother 2014;58:3342–7CrossRefGoogle ScholarPubMed
62Becattini, S, Taur, Y, Pamer, EG. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 2016;22:458–78CrossRefGoogle ScholarPubMed
63Ianiro, G, Tilg, H, Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 2016;65:1906–15CrossRefGoogle ScholarPubMed
64Mikkelsen, KH, Frost, M, Bahl, MI, Licht, TR, Jensen, US, Rosenburg, J et al. Effect of antibiotics on gut microbiota, gut hormones and glucose metabolism. PLoS One 2015;10:e0142352CrossRefGoogle ScholarPubMed
65Yoon, MY, Yoon, SS. Disruption of the gut ecosystem by antibiotics. Yonsei Med J 2018;59:412CrossRefGoogle ScholarPubMed
66Gevers, D, Kugathasan, S, Denson, LA, Vázquez-Baeza, Y, Van Treuren, W, Ren, B et al. The treatment-naïve microbiome in new-onset Crohn's disease. Cell Host Microbe 2014;15:382–92CrossRefGoogle ScholarPubMed
67Slimings, C, Riley, TV. Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J Antimicrob Chemother 2014;69:881–91CrossRefGoogle ScholarPubMed
68Boursi, B, Mamtani, R, Haynes, K, Yang, YX. The effect of past antibiotic exposure on diabetes risk. Eur J Endocrinol 2015;172:639–48CrossRefGoogle ScholarPubMed
69Villarreal, AA, Aberger, FJ, Benrud, R, Gundrum, JD. Use of broad-spectrum antibiotics and the development of irritable bowel syndrome. WMJ 2012;111:1720Google ScholarPubMed
70Lankelma, JM, Cranendonk, DR, Belzer, C, de Vos, AF, de Vos, WM, van der Poll, T et al. Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study. Gut 2017;66:1623–30CrossRefGoogle ScholarPubMed
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Measuring antibiotic levels and their relationship with the microbiome in chronic rhinosinusitis
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Measuring antibiotic levels and their relationship with the microbiome in chronic rhinosinusitis
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Measuring antibiotic levels and their relationship with the microbiome in chronic rhinosinusitis
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *