Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T13:39:09.790Z Has data issue: false hasContentIssue false

Stratifications and Mackey Functors II: Globally Defined Mackey Functors

Published online by Cambridge University Press:  02 February 2010

Peter Webb
Affiliation:
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA, webb@math.umn.edu
Get access

Abstract

We describe structural properties of globally defined Mackey functors related to the stratification theory of algebras. We show that over a field of characteristic zero they form a highest weight category and we also determine precisely when this category is semisimple. This approach is used to show that the Cartan matrix is often symmetric and non-singular, and we are able to compute finite parts of it in some instances. We also develop a theory of vertices of globally defined Mackey functors in the spirit of group representation theory, as well as giving information about extensions between simple functors.

Type
Research Article
Copyright
Copyright © ISOPP 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Adams, J.F., Gunawardena, J.H.C. and Miller, H., The Segal conjecture for elementary abelian p-groups, Topology 24 (1985), 435460.Google Scholar
2.Alperin, J.L., Local representation theory, Cambridge University Press 1986.CrossRefGoogle Scholar
3.Auslander, M., Reiten, I. and Smalø, S.O., Representation theory of Artin algebras, Cambridge studies in advanced mathematics 36, Cambridge University Press 1995.Google Scholar
4.Barker, L., Rhetorical biset functors, rational p-biset functors and their semisimplicity in characteristic zero, preprint.Google Scholar
5.Benson, D.J., Representations and cohomology I: basic representation theory of finite groups and associative algebras, Cambridge studies in advanced mathematics 30, Cambridge University Press 1991.Google Scholar
6.Benson, D.J. and Feshbach, M., Stable splittings of classifying spaces of finite groups, Topology 31 (1992), 157176.CrossRefGoogle Scholar
7.Bouc, S., Foncteurs d'ensembles munis d'une double action, J. Algebra 183 (1996), 664736.CrossRefGoogle Scholar
8.Bouc, S., The functor of rational representations for p-groups, Adv. Math. 186 (2004), 267306.CrossRefGoogle Scholar
9.Bouc, S., The Dade group of a p-group, Invent. Math. 164 (2006), 189231.CrossRefGoogle Scholar
10.Bouc, S., The functor of units of Burnside rings for p-groups, Comment. Math. Helv. 82 (2007), 583615.Google Scholar
11.Bouc, S., Rational p-biset functors, J. Algebra 319 (2008), 17761800.CrossRefGoogle Scholar
12.Bouc, S. and Thévenaz, J., The group of endo-permutation modules, Invent. Math. 139 (2000), 275349.Google Scholar
13.Bourbaki, N., Algebra I, Springer-Verlag (1989).Google Scholar
14.Bourizk, I., Sur des foncteurs simples, Pacific J. Math. 215 (2004), 201221.CrossRefGoogle Scholar
15.Bourizk, I., A remark on a functor of rational representations, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), 149157.Google Scholar
16.Cline, E., Parshall, B. and Scott, L., Finite dimensional algebras and highest weight categories, J. reine angew. Math. 391 (1988), 8599.Google Scholar
17.Cline, E., Parshall, B. and Scott, L., Stratifying endomorphism algebras, Mem. Amer. Math. Soc. 124 (1996), no. 591.Google Scholar
18.tom Dieck, T., Transformation Groups, Walter de Gruyter, Berlin – New York 1987.CrossRefGoogle Scholar
19.Dlab, V. and Ringel, C.M., The module theoretical approach to quasi-hereditary algebras, in ‘Representations of Algebras and Related Topics,’ Tachikawa, H. and Brenner, S., eds.), pp. 200224. London Mathematical Society Lecture Note Series, vol 168 (1992).Google Scholar
20.Erdmann, K., Symmetric groups and quasi-hereditary algebras, pp. 123161 in Dlab, V. and Scott, L.L. (eds.), Finite Dimensional Algberas and Related Topics, Kluwer 1994.Google Scholar
21.Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. Franc. 90 (1962), 323448.Google Scholar
22.Geck, M. and Rouquier, R., Centers and simple modules for Iwahori-Hecke algebras, pp. 251272 in Finite reductive groups (Luminy, 1994), Progr. Math. 141, BirkhŁuser Boston, Boston, MA, 1997.Google Scholar
23.Green, J.A., Polynmial representations of GLn, Lecture Notes in Math. 830, Springer-Verlag 1980.Google Scholar
24.Lewis, L.G. Jr., The theory of Green functors, unpublished notes, 1981.Google Scholar
25.Lewis, L.G. Jr., May, J.P. and McClure, J.E., Classifying G-spaces and the Segal conjecture, pp. 165179 in: Kane, R.M. et al. (eds.), Current Trends in Algebraic Topology, CMS Conference Proc. 2 (1982).Google Scholar
26.Martino, J.R., Classifying spaces and their maps, pp. 161198 in ‘Homotopy theory and its applications’ (Cocoyoc 1993), Contemp. Math. 188, American Math. Soc. 1995.Google Scholar
27.Miller, H., Letter to J.F. Adams, 1981.Google Scholar
28.Symonds, P., A splitting principle for group representations, Comment. Math. Helv. 66 (1991), 169184.CrossRefGoogle Scholar
29.Thévenaz, J., G-Algebras and modular representation theory, Oxford University Press 1995.Google Scholar
30.Thévenaz, J. and Webb, P.J., Simple Mackey Functors, Proc. of 2nd international group theory conference, Bressanone (1989), Supplement to Rendiconti del Circolo Matematico di Palermo 23 (1990), 299319.Google Scholar
31.Thévenaz, J. and Webb, P.J., The structure of Mackey functors, Trans. Amer. Math. Soc. 347 (1995), 18651961.CrossRefGoogle Scholar
32.Webb, P.J., Two classifications of simple Mackey functors with applications to group cohomology and the decomposition of classifying spaces, J. Pure Appl. Algebra 88 (1993), 265304.Google Scholar
33.Webb, P.J., A guide to Mackey functors, Hazewinkel, M. (ed.), Handbook of Algebra vol. 2, Elsevier 2000, pp. 805836.CrossRefGoogle Scholar
34.Webb, P.J., Stratifications and Mackey functors I: functors for a single group, Proc. London Math. Soc. (3) 82 (2001), 299336.Google Scholar
35.Webb, P.J., Weight Theory in the Context of Arbitrary Finite Groups, Fields Institute Communications 40 (2004), 277289.Google Scholar
36.Webb, P.J., Standard stratifications of EI categories and Alperin's weight conjecture, to appear in Journal of Algebra.Google Scholar
37.Witten, C.M., Self-maps of classifying spaces of finite groups and classification of low-dimensional Poincaré duality spaces, Ph.D. thesis, Stanford University 1978.Google Scholar
38.Xu, F., Homological Properties of Category Algebras, Ph.D. thesis, University of Minnesota 2006.Google Scholar