Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-fmrbl Total loading time: 0.22 Render date: 2022-09-27T02:20:55.440Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Generically split projective homogeneous varieties. II

Published online by Cambridge University Press:  07 February 2012

Victor Petrov
Affiliation:
Johannes Gutenberg-Universität Mainz, Institut für Mathematik, Staudingerweg 9, D-55099 Mainz, Germanyvictorapetrov@googlemail.com
Nikita Semenov
Affiliation:
Johannes Gutenberg-Universität Mainz, Institut für Mathematik, Staudingerweg 9, D-55099 Mainz, Germanysemenov@uni-mainz.de
Get access

Abstract

This article gives a complete classification of generically split projective homogeneous varieties. This project was begun in our previous article [PS10], but here we remove all restrictions on the characteristic of the base field, give a new uniform proof that works in all cases and in particular includes the case PGO2n+ which was missing in [PS10].

Type
Research Article
Copyright
Copyright © ISOPP 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bri97.Brion, M., Equivariant cohomology and equivariant intersection theory, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 514, Representation theories and algebraic geometry (Montreal, 1997), 137, Kluwer Acad. Publ., Dordrecht, 1998.Google Scholar
Ch10.Chernousov, V., On the kernel of the Rost invariant for E8modulo 3, In Quadratic Forms, Linear Algebraic Groups, and Cohomology, Developments in Mathematics 18 (2010), Part 2, 199214.CrossRefGoogle Scholar
Gr58.Grothendieck, A., La torsion homologique et les sections rationnelles, Exposé 5 in Anneaux de Chow et applications, Séminaire C. Chevalley, 2e année (1958).Google Scholar
Kc85.Kac, V., Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups, Invent. Math. 80 (1985), 6979.CrossRefGoogle Scholar
PS10.Petrov, V., Semenov, N., Generically split projective homogeneous varieties, Duke Math. J. 152 (2010), 155173.CrossRefGoogle Scholar
PSZ08.Petrov, V., Semenov, N., Zainoulline, K., J-invariant of linear algebraic groups, Ann. Sci. Éc. Norm. Sup. 41 (2008), no 6, 10231053.CrossRefGoogle Scholar
QSZ.Quéguiner-Mathieu, A., Semenov, N., Zainoulline, K., The J-invariant, Tits algebras and triality, Preprint 2011, available from http://arxiv.org/abs/1104.1096.Google Scholar
4
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Generically split projective homogeneous varieties. II
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Generically split projective homogeneous varieties. II
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Generically split projective homogeneous varieties. II
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *