Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-25T09:47:04.262Z Has data issue: false hasContentIssue false

Protective efficacy of a filarial surface antigen in experimental filariasis

Published online by Cambridge University Press:  01 March 2009

N.N. Mandal
Affiliation:
Division of Immunology, Regional Medical Research Centre (Indian Council of Medical Research), Chandrasekharpur, Bhubaneswar751023, India
M.S. Bal
Affiliation:
Division of Immunology, Regional Medical Research Centre (Indian Council of Medical Research), Chandrasekharpur, Bhubaneswar751023, India
M.K. Das
Affiliation:
Division of Immunology, Regional Medical Research Centre (Indian Council of Medical Research), Chandrasekharpur, Bhubaneswar751023, India
M.K. Beuria*
Affiliation:
Division of Immunology, Regional Medical Research Centre (Indian Council of Medical Research), Chandrasekharpur, Bhubaneswar751023, India
*
*Fax: +91 674 301351 E-mail: mihirbeuria@rediffmail.com

Abstract

A water-insoluble, detergent-soluble, surface-associated glycoprotein, designated as Dssd1, was found to induce microfilaria clearance in Mastomys coucha implanted with Setaria digitata. Intraperitoneal implantation of adult female worms of S. digitata in M. coucha could induce microfilaraemia lasting about 165 days in circulation. Immunization of M. coucha with Dssd1 antigen either before or after implantation of worms resulted in a significant reduction in microfilaria density. Complete clearance of circulating microfilaria was achieved by immunization (before and after implantation) in animals by 95 and 105 days post-implantation, respectively, indicating the efficacy of Dssd1 antigen in the clearance of microfilaraemia in infected M. coucha.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, S.B., Murugan, V., Prabhu, P.R., Anandaraman, V., Reddy, M.V.R. & Kaliraj, P. (2008) Comparison of immunogenicity, protective efficacy of single and cocktail DNA vaccine of Brugia malayi abundant larval transcript (ALT-2) and thioredoxin perioxidase (TPX) in mice. Acta Tropica, in press.CrossRefGoogle Scholar
Babayan, S., Ungeheuer, M.N., Martin, C., Attout, T., Belnoue, E., Snounou, G., Renia, L., Korenaga, M. & Bain, O. (2003) Resistance and susceptibility to filarial infection with Litomosides sigmodontis are associated with early differences in parasite development and in localized immunoreactivities. Infection and Immunity 71, 68206829.CrossRefGoogle Scholar
Babayan, S., Attout, T., Harris, A., Taylor, M.D., Le Goff, L., Vuong, P.N., Renia, L., Allen, J.E. & Baino, O. (2006) Vaccination against filarial nematodes with irradiated larvae provides long term protection against the third larval stage but not against subsequent lifecycle stages. International Journal of Parasitology 36, 903914.CrossRefGoogle ScholarPubMed
Bal, M. & Das, M.K. (1999) Antibody response to a filarial antigen fraction in individuals exposed to Wuchereria bancrofti infection in India. Acta Tropica 72, 259274.CrossRefGoogle ScholarPubMed
Bal, M.S., Beuria, M.K., Mandal, N.M. & Das, M.K. (2003) Antigenemia is associated with low antibody response to carbohydrate determinants of a filarial surface antigen. Parasite Immunology 25, 107111.CrossRefGoogle ScholarPubMed
Chenthamarakshan, V., Reddy, M.V.R. & Harinath, B.C. (1995) Immunodiagnostic potential of a 120 kda Brugia malayi adult antigen fraction, BmA-2, in lymphatic filariasis. Parasite Immunology 17, 277285.CrossRefGoogle Scholar
Dabir, P., Dabir, S., Krithika, K.N., Goswami, K. & Reddy, M.V.R. (2006) Immunoprophylactic evaluation of a 37 kda Brugia malayi recombinant antigen in lymphatic filariasis. Clinical Microbiology and Infection 12, 361368.CrossRefGoogle ScholarPubMed
Dabir, S., Dabir, P., Goswamy, K. & Reddy, M.V.R. (2008) Prophylactic evaluation of a recombinant extracellular superoxide dismutase of Brugia malayi in Jird model. Vaccine 26, 37053710.CrossRefGoogle ScholarPubMed
Dixit, S., Gaur, R.L., Khan, M.A., Saxena, J.K., Murthy, P.S. & Murthy, P.K. (2004) Inflammatory antigens of Brugia malayi and their effect on rodent host Mastomys coucha. Parasite Immunology 26, 397407.CrossRefGoogle ScholarPubMed
Elson, H.L., Guderian, R.H., Aranjo, E., Bradley, J.E., Days, A. & Nutman, T.B. (1995) Immunity to onchocerciasis: identification of a putatively immune population in a hyperendemic area of Ecuador. Journal of Infectious Diseases 169, 588594.CrossRefGoogle Scholar
Freedman, D.O., Nutman, T.B. & Ottesen, E.A. (1989) Selective recognition of a 43 kDa larval stage antigen by infection free individuals in an endemic area. Journal of Clinical Investigation 83, 1422.CrossRefGoogle Scholar
Hartmann, S., Sereda, M.J., Sollwedel, A., Kalinna, B. & Lucius, R. (2006) A nematode allergen elicits protection against challenge infection under specific conditions. Vaccine 24, 35813590.CrossRefGoogle ScholarPubMed
Hoffman, W.H., Pfaff, A.W., Schulz-key, H. & Soboslay, P.T. (2001) Determinants for resistance and susceptibity to microfilaria in Litomosides sigmodontis filariasis. Parasitology 122, 641649.CrossRefGoogle Scholar
Kazura, J.W., Maroney, P.A., Pearlman, E. & Nilsen, T.W. (1990) Protective efficacy of a cloned Brugia malayi antigen in a mouse model of microfilaraemia. Journal of Immunology 145, 22602264.CrossRefGoogle Scholar
Lamb, T.J., Harris, A., Legeoff, L., Read, A.F. & Allen, J.E. (2008) Litmosoides sigmondontis: vaccine induced immune responses against Wolbachia surface protein can enhance the survival of filarial nematodes during primary infection. Experimental Parasitology 118, 285289.CrossRefGoogle Scholar
Michael, E., Bundy, D.A.P. & Grenfell, B.T. (1996) Re-assessing global prevalence and distribution of lymphatic filariasis. Parasitology 112, 409428.CrossRefGoogle ScholarPubMed
Mukhopadhaya, S. & Ravindran, B. (1997) Antibodies to diethylcarbamazine potentiate the anti-filarial activity of the drug. Parasite Immunology 19, 191195.CrossRefGoogle Scholar
Mukhopadhaya, S., Dash, A.P. & Ravindran, B. (1996) Seataria digitata microfilaraemia in Mastomys coucha: an animal model for chemotherapeutic and immunobiological studies. Parasitology 113, 323330.CrossRefGoogle Scholar
Pfaff, A.W., Schulz-key, H., Soboslay, P.T., Geiger, S.M. & Hoffman, W.H. (2000) Litomosides sigmodontis: dynamics of the survival of microfilaria in resistance and susceptible strains of mice. Experimental Parasitology 94, 6774.CrossRefGoogle Scholar
Ravindran, B., Satapathy, A.K., Sahoo, P.K. & Babbu Geddam, J.J. (2000) Protective immunity in human bancroftian filariasis: inverse relationship between antibodies to microfilarial sheath and circulating filarial antigens. Parasite Immunology 22, 633637.CrossRefGoogle ScholarPubMed
Rajan, T.V., Ganley, L., Paciorkowski, N., Spencer, L., Klei, T.R. & Shultz, L.D. (2002) Brugian infection in peritoneal cavities of laboratory mice: kinetics of infections and cellular responses. Experimental Parasitology 100, 235247.CrossRefGoogle ScholarPubMed
Tanner, M. & Weiss, N. (1978) Studies on Dipetalonema viteae (Filarioidea). II. Antibody dependent adhesion of peritoneal exudate cells to microfilariae in vitro. Acta Tropica 35, 151160.Google Scholar
Thirugnanam, S., Pandiaraja, P., Ramaswamy, K., Murugan, V., Gnansekar, M., Nandakumar, K., Reddy, M.V. & Kaliraj, P. (2007) Brugia malayi: comparison of protective immune response induced by Bm-alt-2 DNA, recombinant Bm ALT-2 protein and prime-boost vaccine regimens in a jird model. Experimental Parasitology 116, 483491.CrossRefGoogle Scholar
World Health Organization, (1995) World health report, 1995. Geneva, WHO.Google Scholar
Zahner, H. (1995) Induction and prevention of shock like lethal side effects after microfilaricidal treatment in filarae infected rodents. Tropical Medicine and Parasitology 46, 221229.Google ScholarPubMed