Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T22:05:08.845Z Has data issue: false hasContentIssue false

Major lipids and fatty acids in the liver and rumen fluid of the goat (Capra hircus) infected with the trematode Paramphistomum cervi

Published online by Cambridge University Press:  10 September 2010

D. Ghosh
Affiliation:
Department of Zoology, R.B.C. College, Naihati743 165, West Bengal, India
K.K. Misra*
Affiliation:
Department of Zoology, R.B.C. College, Naihati743 165, West Bengal, India
*

Abstract

The present study records the occurrence of major lipid fractions and their fatty acids in a digenetic trematode parasite Paramphistomum cervi, and the rumen fluid and liver of the goat (Capra hircus). The amount of neutral lipids (NL), glycolipids (GL) and phospholipids (PL) of goat liver, rumen fluid and of the parasite shows that the rumen fluid is rich in NL, which is also in maximum quantity in the parasite, while the liver is rich in PL followed by NL. The number of fatty acids of total lipids (TL), NL and PL is greater in the parasite than those of the liver and rumen fluid. The number of fatty acids of GL is higher in the liver than in the parasite and the rumen fluid. Comparison of unsaturated fatty acid (UFA), C18 total and C18 UFA of TL, NL, GL and PL of the liver, rumen fluid and the parasite shows that the amount of C18 UFA is higher in P. cervi in all the lipid fractions, except for GL, than in the rumen fluid and the liver. The results reveal that P. cervi absorbs a greater number of fatty acids than its host.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackman, R.G. & Burgher, R.D. (1965) Cod liver oil fatty acids as secondary reference standards in the GLC of polyunsaturated fatty acids of animal origin: analysis of a dermal oil of the Atlantic leather-back turtle. Journal of American Oil Chemical Society 42, 3842.CrossRefGoogle Scholar
Awharitoma, A.O., Opute, F.I., Ali, S.N. & Obiamiwe, B.A. (1990) Lipid biosynthesis in Paramphistomum microbothrium (Trematoda). Angew Parasitology 31, 5153.Google Scholar
Barrett, J. (1981) Biochemistry of parasitic helminths. London, Macmillan.Google Scholar
Barrett, J. (1983) Lipid metabolism. Vol. 2, pp. 391419in Arme, C. & Pappas, P.W. (Eds) Biology of the eucestoda. London, Academic Press.Google Scholar
Bligh, E.G. & Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37, 911917.Google Scholar
Bogers, J.J., Nibbeling, H.A., van Marck, E.A. & Deelder, A.M. (1994) Immunofluorescent visualization of the excretory and gut system of Schistosoma mansoni by confocal laser scanning microscopy. American Journal of Tropical Medicine and Hygiene 50, 612619.CrossRefGoogle ScholarPubMed
Brito, C.F.A., Oliveira, G.C., Oliveira, S.C., Street, M., Riengrojpitak, S., Wilson, R.A., Simpson, A.J.G. & Oliveira, R.C. (2002) Sm 14 gene expression in different stages of the Schistosoma mansoni life cycle and immunolocalization of the Sm 14 protein within the adult worm. Brazil Journal of Medicine and Biological Research 35, 377381.Google Scholar
Brouwers, J.F., Smeenk, I.M., van Golde, L.M. & Tielens, A.G. (1997) The incorporation, modification and turnover of fatty acids in adult Schistosoma mansoni. Molecular Biochemistry and Parasitology 88, 175185.CrossRefGoogle ScholarPubMed
Brouwers, J.F., Van Hellemond, J.J., van Golde, L.M. & Tielens, A.G. (1998) Ether lipids and their possible physiological function in adult Schistosoma mansoni. Molecular Biochemistry and Parasitology 96, 4958.CrossRefGoogle ScholarPubMed
Chappell, L.H. (1980) Physiology of parasites. 213 pp. London, Blackie.Google Scholar
Cheng, T.C. (1986) General parasitology. 2nd edn.827 pp. London, Academic Press.Google Scholar
Christie, W.W. (2003) Lipid analysis. 3rd edn.416 pp. Bridgwater, Oily Press.Google Scholar
Dalton, J.P., Skelly, P. & Halton, D.W. (2004) Role of the tegument and gut in nutrient uptake by parasitic platyhelminths. Canadian Journal of Zoology 82, 211232.CrossRefGoogle Scholar
Deelder, A.M. & Kornelis, D. (1980) Schistosoma mansoni: characterization of two circulating polysaccharide antigens and the immunological response to these antigens in mouse, hamster and human infections. Experimental Parasitology 50, 1632.Google Scholar
Deelder, A.M., vam Dam, G.J., Kornelis, D. & Fillié, Y.E. (1996) Schistosoma: analysis of monoclonal antibodies reactive with the circulating antigens CAA and CCA. Parasitology 112, 2135.CrossRefGoogle ScholarPubMed
DiConza, J.J. & Basch, P.F. (1976) Accumulation of lipids in Schistosoma mansoni sporocysts cultured in vitro. Journal of Invertebrate Pathology 28, 337340.Google Scholar
Fried, B., Rao, K.S., Sherma, J. & Huffman, J.E. (1993) Fatty acid composition of Echinostoma trivolvis (Trematoda) rediae and adults and of the digestive gland – gonad complex of Helisoma trivolvis (Gastropoda) infected with the intramolluscan stages of this echinostome. Parasitological Research 79, 471474.CrossRefGoogle ScholarPubMed
Furlong, S.T. (1991) Unique roles for lipids in Schistosoma mansoni. Parasitology Today 7, 5962.CrossRefGoogle ScholarPubMed
Furlong, S.T., Thibault, K.S. & Rogers, R.A. (1992) Fluorescent phospholipids preferentially accumulate in sub-tegumental cells of schistosomula of Schistosoma mansoni. Journal of Cell Science 103, 823830.CrossRefGoogle ScholarPubMed
Furlong, S.T., Thibault, K.S., Morbelli, L.M., Quinn, J.J. & Rogers, R.A. (1995) Uptake and compartmentalization of fluorescent lipid analogs in larval Schistosoma mansoni. Journal of Lipid Research 36, 112.CrossRefGoogle ScholarPubMed
Ghosh, D., Dey, C. & Misra, K.K. (2005) Host–parasite relationship: fatty acid compositions of a trematode, Paramphistomum cervi and common Indian goat, Capra hircus. Journal of Parasitic Disease 29, 119123.Google Scholar
Hokke, C.H. & Deelder, A.M. (2001) Schistosome glycoconjugates in host–parasite interplay. Glycoconjugates Journal 18, 573587.Google Scholar
Hrzenjak, T. & Ehrlich, I. (1975) Polarni lipidi u parazitskih helminata. I. Polarni lipidi Trematoda Fasciola hepatica i Paramphistomum microbothrium. Veterinarski Archiv 45, 299309(in Polish).Google Scholar
Hutchison, W.F., Turner, A.C., Grayson, D.P. & White, H.B. (1976) Lipid analysis of the adult dog heartworm, Dirofilaria immitis. Comparative Biochemistry and Physiology 53B, 495497.Google Scholar
Khoo, K.H., Sarda, S., Xu, X., Caulfield, J.P., McNeil, M.R., Homans, S.W., Morris, H.R. & Dell, A. (1995) A unique multifucosylated -3GalNAcβ1-4GlcNAcβ1-3Galα1-motif constitutes the repeating unit of the complex O-glycans derived from the cercarial glycocalyx of Schistosoma mansoni. Journal of Biological Chemistry 270, 1711417123.Google Scholar
Lee, S.H., Song, C.Y. & Cho, B.H. (1977) A study on the lipids of Chinese liver fluke, Clonorchis sinensis. Korean Journal of Parasitology 15, 109114.CrossRefGoogle Scholar
Mangold, H.K. (1969) Aliphatic lipids. pp. 363421in Stahl, E. (Ed.) Thin-layer chromatography. New York, Springer.Google Scholar
Mayes, P.A. & Botham, K.M. (2003) Metabolism of unsaturated fatty acids and eicosanoids. pp. 190196in Murray, R.K., Granner, D.K., Mayes, P.A. & Rodwell, V.W. (Eds) Harper's Illustrated Biochemistry. 26th edn.New Delhi, McGraw-Hill.Google Scholar
Meyer, F., Meyer, H. & Bueding, E. (1970) Lipid metabolism in the parasitic and free-living flatworms, Schistosoma mansoni and Dugesia dorotocephala. Biochimica Biophysica Acta 210, 257266.CrossRefGoogle ScholarPubMed
Misra, K.K., Shkrob, I., Rakshit, S. & Dembitsky, V.M. (2002) Variability in fatty acids and fatty aldehydes in different organs of two prosobranch gastropod mollusks. Biochemical and Systematic Ecology 30, 749761.CrossRefGoogle Scholar
Mondal, M., Mukhopadhyay, D., Ghosh, D., Dey, C. & Misra, K.K. (2009) Analysis of major lipid classes and their fatty acids in a cestode parasite of domestic fowl, Raillietina (Fuhrmannetta) echinobothrida. Proceedings of the Zoological Society 62, 131137.CrossRefGoogle Scholar
Palanivel, V., Posey, C., Horauf, A.M., Solbach, W., Piessens, W.F. & Harn, D.A. (1996) B-cell outgrowth and ligand-specific production of IL-10 correlate with Th2 dominance in certain parasitic diseases. Experimental Parasitology 84, 168177.CrossRefGoogle ScholarPubMed
Roberts, L.S. & Janovy, J. Jr (Eds) (2000) Foundation of parasitology. 6th edn.670 pp. Boston, McGraw-Hill, International Edition.Google Scholar
Rouser, G., Kritchevsky, G. & Yamamoto, A. (1976) Column chromatographic and associated procedures for separation and determination of phosphatides and glycolipids. pp. 713776in Marinetti, G.V. (Ed.) Lipid chromatographic analysis. Vol. 3, 2nd edn.New York, M. Dekker.Google Scholar
Rumjanek, F.D. & Simpson, A.J. (1980) The incorporation and utilization of radio-labelled lipids by adult Schistosoma mansoni in vitro. Molecular Biochemistry and Parasitology 1, 3144.CrossRefGoogle Scholar
Sato, S., Hirayama, T. & Hirazawa, N. (2008) Lipid content and fatty acid composition of the monogenean Neobenedenia girellae and comparison between the parasite and host fish species. Parasitology 135, 967975.Google Scholar
Schrank, FvP. (1790) Frotekning på nagra hittils obeskrigene intestinalkrak. Kgl. Svensk. Vetensk. Acad. l18–126. [Founding of several species, Dicrocoeliumlanceatum’, Paramphistomum cervi, etc.] (in Swedish).Google Scholar
Sherman, I.W. (1998) Malaria: parasite biology, pathogenesis and protection. Washington, DC, USA, ASM Press.Google Scholar
Smith, T.M. & Brooks, T.J. (1969) Lipid fractions in adult Schistosoma mansoni. Parasitology 59, 293298.Google Scholar
Smyth, J.D. (1994) Animal parasitology. 3rd edn.549 pp. Cambridge, Cambridge University Press.Google Scholar
Tielens, A.G.M. (1997) Biochemistry of trematodes. pp. 309343in Fried, B. & Graczyk, T.K. (Eds) Advances in trematode biology. Florida, Boca Raton, CRC Press.Google Scholar
Tielens, A.G.M. (1999) Metabolism. pp. 277306in Dalton, J.P. (Ed.) Fasciolosis. Wallingford, Oxon, UK, CABI.Google Scholar
van der Kleij, D., van Remoortere, A., Schuitemaker, J.H., Kapsenberg, M.L., Deelder, A.M., Tielens, A.G., Hokke, C.H. & Yazdanbakhsh, M. (2002) Triggering of innate immune responses by schistosome egg glycolipids and their carbohydrate epitope GalNAcβ1-4 (Fucα1-2 Fucα1-3)GlcNAc. Journal of Infectious Disease 185, 531539.CrossRefGoogle Scholar
van Remoortere, A., Hokke, C.H., van Dam, G.J., van Die, I., Deelder, A.M. & van den Eijnden, D.H. (2000) Various stages of Schistosoma express LewisX, LacdiNAc, GalNAcβ1-4 (Fucα1-3) GlcNAc and GalNAcβ1-4 (Fucα1-2 Fucα1-3) GlcNAc carbohydrate epitopes: detection with monoclonal antibodies that are characterized by enzymatically synthesized neoglycoproteins. Glycobiology 10, 601609.Google Scholar
Vykhrestyuk, N.P. & Yarygina, G.V. (1975) Characterization of the lipids of some helminths parasitic in cattle. Trudy Biologo-Pochovennogo Instituta (Gel' mintologicheskie Issledovaniya Zhivotnykh i rastenii) Novaya Seriya 26, 192201(in Russian).Google Scholar
Wuhrer, M., Grimm, C., Dennis, R.D., Idris, M.A. & Geyer, R. (2004) The parasitic trematode Fasciola hepatica exhibits mammalian type glycolipids as well as Gal (β1–6) Gal terminating glycolipids that account for cestode serological cross-reactivity. Glycobiology 14, 115126.Google Scholar
Yusufi, A.N.K. & Siddiqi, A.H. (1976) Comparative studies on the lipid composition of some digenetic trematodes. International Journal of Parasitology 6, 58.Google Scholar
Yusufi, A.N.K. & Siddiqi, A.H. (1977) Lipid composition of Gastrodiscoides hominis from pig. Indian Journal of Parasitology 1, 5961.Google Scholar