Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T00:04:37.052Z Has data issue: false hasContentIssue false

Genetic characterization of Echinococcus granulosus in camels, cattle and sheep from the south-east of Iran indicates the presence of the G3 genotype

Published online by Cambridge University Press:  13 July 2011

E. Hajialilo
Affiliation:
Department of Parasitology, School of Medicine, Kerman University of Medical Sciences, Kerman76169-14111, Iran
M.F. Harandi*
Affiliation:
Department of Parasitology, School of Medicine, Kerman University of Medical Sciences, Kerman76169-14111, Iran
M. Sharbatkhori
Affiliation:
Department of Medical Parasitology and Mycology, Faculty of Medicine, Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan49155, Iran
H. Mirhendi
Affiliation:
Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran14155-6446, Iran
S. Rostami
Affiliation:
Department of Parasitology, School of Medicine, Kerman University of Medical Sciences, Kerman76169-14111, Iran
*
*Fax: +98-341-3221676 E-mail: fasihi@kmu.ac.ir

Abstract

Echinococcus granulosus, the aetiologic agent of cystic echinococcosis (CE), is one of the most important zoonotic helminthes worldwide. Isolates of the parasite show considerable genetic variation in different intermediate hosts. Several genotypes and species are described in different eco-epidemiological settings. This study investigated E. granulosus genotypes existing in livestock and humans from the province of Kerman, located in south-eastern Iran, using sequencing data of cox1 and nad1 mitochondrial genes. Fifty-eight E. granulosus isolates, including 35 from sheep, 11 from cattle, 9 from camels and 3 from goats, were collected from slaughterhouses throughout Kerman. One human isolate was obtained from a surgical case of CE. Mitochondrial cox1 and nad1 regions were amplified using polymerase chain reaction (PCR) and 38 isolates were sequenced. Genotypes G1 (73.7%), G3 (13.2%) and G6 (13.1%) were identified from the isolates. G1 was the most common genotype from sheep (86.7%), cattle (80%), camels (44.4%) and goats (100%). Sheep, cattle and camels were also found to be infected with the G3 genotype (buffalo strain). The human isolate was identified as the G6 genotype. Results showed that the G3 genotype occurred in different animal hosts in addition to G1 and G6 genotypes.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhattacharya, D., Bera, A.K., Bera, B.C., Maity, A. & Das, S.K. (2007) Genotypic characterisation of Indian cattle, buffalo and sheep isolates of Echinococcus granulosus. Veterinary Parasitology 143, 371374.CrossRefGoogle ScholarPubMed
Bowles, J. & McManus, D.P. (1993) NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. International Journal for Parasitology 23, 969972.CrossRefGoogle ScholarPubMed
Bowles, J. & McManus, D.P. (1994) Genetic characterization of the Asian Taenia, a newly described taeniid cestode of humans. American Journal of Tropical Medicine and Hygiene 50, 3344.CrossRefGoogle ScholarPubMed
Bowles, J., Blair, D. & McManus, D.P. (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Molecular and Biochemical Parasitology 54, 165173.CrossRefGoogle ScholarPubMed
Casulli, A., Manfredi, M., La Rosa, G., Cerbo, A., Genchi, C. & Pozio, E. (2008) Echinococcus ortleppi and E. granulosus G1, G2 and G3 genotypes in Italian bovines. Veterinary Parasitology 155, 168172.CrossRefGoogle Scholar
Casulli, A., Zeyhle, E., Brunetti, E., Pozio, E., Meroni, V., Genco, F. & Filice, C. (2010) Molecular evidence of the camel strain (G6 genotype) of Echinococcus granulosus in humans from Turkana, Kenya. Transactions of the Royal Society of Tropical Medicine and Hygiene 104, 2932.CrossRefGoogle ScholarPubMed
Daniel Mwambete, K., Ponce-Gordo, F. & Cuesta-Bandera, C. (2004) Genetic identification and host range of the Spanish strains of Echinococcus granulosus. Acta Tropica 91, 8793.CrossRefGoogle ScholarPubMed
Fasihi Harandi, M., Hobbs, R.P., Adams, P.J., Mobedi, I., Morgan-Ryan, U.M. & Thompson, R.C. (2002) Molecular and morphological characterization of Echinococcus granulosus of human and animal origin in Iran. Parasitology 125, 367373.CrossRefGoogle Scholar
Gasser, R.B., Zhu, X. & McManus, D.P. (1998) Display of sequence variation in PCR-amplified mitochondrial DNA regions of Echinococcus by single-strand conformation polymorphism. Acta Tropica 71, 107115.CrossRefGoogle ScholarPubMed
Gasser, R.B., Zhu, X. & McManus, D.P. (1999) NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequences compared for members of the genus Taenia (Cestoda). International Journal for Parasitology 29, 19651970.CrossRefGoogle ScholarPubMed
Gholami, S., Irshadullah, M. & Khan, A. (2009) Genetic variation of Echinococcus granulosus isolates from Indian buffalo and Iranian sheep, cattle and camel. Journal of Mazandaran University of Medical Sciences 19, 6069.Google Scholar
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hüttner, M., Nakao, M., Wassermann, T., Siefert, L., Boomker, J.D., Dinkel, A., Sako, Y., Mackenstedt, U., Romig, T. & Ito, A.(2008) Genetic characterization and phylogenetic position of Echinococcus felidis (Cestoda: Taeniidae) from the African lion. International Journal for Parasitology 38, 861868.CrossRefGoogle ScholarPubMed
Jamali, R., Ghazanchaei, A. & Asgharzadeh, M. (2004) Identification and characterization of Echinococcus granulosus by PCR-RFLP technique in Tabriz district. Journal of Parasitic Diseases 28, 6972.Google Scholar
Kamenetzky, L., Canova, S.G., Guarnera, E.A. & Rosenzvit, M.C. (2000) Echinococcus granulosus: DNA extraction from germinal layers allows strain determination in fertile and nonfertile hydatid cysts. Experimental Parasitology 95, 122127.CrossRefGoogle ScholarPubMed
Latif, A.A., Tanveer, A., Maqbool, A., Siddiqi, N., Kyaw-Tanner, M. & Traub, R.J. (2010) Morphological and molecular characterisation of Echinococcus granulosus in livestock and humans in Punjab, Pakistan. Veterinary Parasitology 170, 4449.CrossRefGoogle ScholarPubMed
Lavikainen, A., Lehtinen, M.J., Meri, T., Hirvela-Koski, V. & Meri, S. (2003) Molecular genetic characterization of the Fennoscandian cervid strain, a new genotypic group (G10) of Echinococcus granulosus. Parasitology 127, 207215.CrossRefGoogle Scholar
Li, T., Ito, A., Nakaya, K., Qiu, J., Nakao, M., Zhen, R., Xiao, N., Chen, X., Giraudoux, P. & Craig, P.S. (2008) Species identification of human echinococcosis using histopathology and genotyping in northwestern China. Transactions of the Royal Society of Tropical Medicine and Hygiene 102, 585590.CrossRefGoogle ScholarPubMed
Maillard, S., Benchikh-Elfegoun, M.C., Knapp, J., Bart, J.M., Koskei, P., Gottstein, B. & Piarroux, R. (2007) Taxonomic position and geographical distribution of the common sheep G1 and camel G6 strains of Echinococcus granulosus in three African countries. Parasitology Research 100, 495503.CrossRefGoogle ScholarPubMed
Moro, P. & Schantz, P. (2009) Echinococcosis: a review. International Journal of Infectious Diseases 13, 125133.CrossRefGoogle ScholarPubMed
Moro, P.L., Nakao, M., Ito, A., Schantz, P.M., Cavero, C. & Cabrera, L. (2009) Molecular identification of Echinococcus isolates from Peru. Parasitology International 58, 184186.CrossRefGoogle ScholarPubMed
M'Rad, S., Filisetti, D., Oudni, M., Mekki, M., Belguith, M., Nouri, A., Sayadi, T., Lahmar, S., Candolfi, E., Azaiez, R., Mezhoud, H. & Babba, H. (2005) Molecular evidence of ovine (G1) and camel (G6) strains of Echinococcus granulosus in Tunisia and putative role of cattle in human contamination. Veterinary Parasitology 129, 267272.CrossRefGoogle ScholarPubMed
Nakao, M., McManus, D.P., Schantz, P.M., Craig, P.S. & Ito, A. (2007) A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 134, 713722.CrossRefGoogle ScholarPubMed
Omer, R.A., Dinkel, A., Romig, T., Mackenstedt, U., Elnahas, A.A., Aradaib, I.E., Ahmed, M.E., Elmalik, K.H. & Adam, A. (2010) A molecular survey of cystic echinococcosis in Sudan. Veterinary Parasitology 169, 340346.CrossRefGoogle ScholarPubMed
Page, R.D.M. (1996) TreeView: an application to display phylogenetic trees on personal computers. Computer and Applied Biosciences 12, 357358.Google ScholarPubMed
Rokni, M.B. (2009) Echinococcosis/hydatidosis in Iran. Iranian Journal of Parasitology 4, 116.Google Scholar
Rostami Nejad, M., Nazemalhosseini Mojarad, E., Nochi, Z., Fasihi Harandi, M., Cheraghipour, K., Mowlavi, G.R. & Zali, M.R. (2008) Echinococcus granulosus strain differentiation in Iran based on sequence heterogeneity in the mitochondrial 12S rRNA gene. Journal of Helminthology 82, 343347.CrossRefGoogle ScholarPubMed
Saarma, U., Jogisalu, I., Moks, E., Varcasia, A., Lavikainen, A., Oksanen, A., Simsek, S., Andresiuk, V., Denegri, G., Gonzalez, L.M., Ferrer, E., Garate, T., Rinaldi, L. & Maravilla, P. (2009) A novel phylogeny for the genus Echinococcus, based on nuclear data, challenges relationships based on mitochondrial evidence. Parasitology 136, 317328.CrossRefGoogle ScholarPubMed
Sharbatkhori, M., Mirhendi, H., Jex, A.R., Pangasa, A., Campbell, B.E., Kia, E.B., Eshraghian, M.R., Harandi, M.F. & Gasser, R.B. (2009) Genetic categorization of Echinococcus granulosus from humans and herbivorous hosts in Iran using an integrated mutation scanning-phylogenetic approach. Electrophoresis 30, 26482655.CrossRefGoogle ScholarPubMed
Sharbatkhori, M., Mirhendi, H., Harandi, M.F., Rezaeian, M., Mohebali, M., Eshraghian, M., Rahimi, H. & Kia, E.B. (2010) Echinococcus granulosus genotypes in livestock of Iran indicating high frequency of G1 genotype in camels. Experimental Parasitology 124, 373379.CrossRefGoogle ScholarPubMed
Simsek, S., Balkaya, I. & Koroglu, E. (2010) Epidemiological survey and molecular characterization of Echinococcus granulosus in cattle in an endemic area of eastern Turkey. Veterinary Parasitology 172, 347349.CrossRefGoogle Scholar
Simsek, S., Kaplan, M. & Ozercan, I.H. (2011) A comprehensive molecular survey of Echinococcus granulosus in formalin-fixed paraffin-embedded tissues in human isolates in Turkey. Parasitology Research (in press), doi 10.1007/s00436-011-2269-8.CrossRefGoogle ScholarPubMed
Tappe, D., Kern, P. & Frosch, M. (2010) A hundred years of controversy about the taxonomic status of Echinococcus species. Acta Tropica 115, 167174.CrossRefGoogle ScholarPubMed
Thompson, R.C. (2008) The taxonomy, phylogeny and transmission of Echinococcus. Experimental Parasitology 119, 439446.CrossRefGoogle ScholarPubMed
Thompson, R. & McManus, D.P. (2001) Aetiology: parasites and life-cycles. pp. 119in Eckert, J., Gemmell, M.A., Meslin, F.X. & Pawlowski, Z.S. (Eds) WHO/OIE manual on echinococcosis in human and animals: A public health problem of global concern. Paris, World Organisation for Animal Health.Google Scholar
Utuk, A., Simsek, S., Koroglu, E. & McManus, D. (2008) Molecular genetic characterization of different isolates of Echinococcus granulosus in east and southeast regions of Turkey. Acta Tropica 107, 192194.CrossRefGoogle Scholar
Vural, G., Baca, A.U., Gauci, C.G., Bagci, O., Gicik, Y. & Lightowlers, M.W. (2008) Variability in the Echinococcus granulosus cytochrome C oxidase 1 mitochondrial gene sequence from livestock in Turkey and a re-appraisal of the G1–3 genotype cluster. Veterinary Parasitology 154, 347350.CrossRefGoogle Scholar
Zhang, L., Eslami, A., Hosseini, S.H. & McManus, D.P. (1998) Indication of the presence of two distinct strains of Echinococcus granulosus in Iran by mitochondrial DNA markers. American Journal of Tropical Medicine and Hygiene 59, 171174.CrossRefGoogle ScholarPubMed