Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T15:43:36.766Z Has data issue: false hasContentIssue false

Carbohydrate reserves and phosphatase activity in the mollusc-trematode relationship of Mytilus edulis L. and Proctoeces maculatus (Looss, 1901) Odhner, 1911

Published online by Cambridge University Press:  05 June 2009

Emmet A. Dennis
Affiliation:
Department of Zoology and the Bureau of Biological Research, Rutgers University, New Brunswick, New Jersey, U.S.A.

Abstract

Biochemical and histochemical techniques were employed to study tissue distribution, and concentrations of carbohydrate reserves and phosphatase activity in uninfected Mytilus edulis and specimens parasitized by Proctoeces maculatus. Glycogen was stored in the mantle, hepatopancreas, labial palps and mesosomal Leydig cells of the mussel, and in the body parenchyma of post-miracidial stages of the trematode. The glycogen content of the mantle and hepatopancreas increased steadily from January to a maximum level in June and then declined sharply to a minimum level in December. No differences were observed in the annual glycogen cycle of infected and uninfected mussels. Starvation of mussels at a temperature conducive to high metabolic activity of the worms resulted in a rapid decline in the glycogen content of infected mussels by the first week of starvation. A stable glycogen concentration was maintained for 4 weeks by starved uninfected mussels. The distribution of acid phosphatase activity in the tissues of M. edulis and P. maculatus was greater than that of alkaline phosphatase activity, but increased alkaline phosphatase activity was observed in the haemolymph of mussels infected with adult P. maculatus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Axmann, M. C. (1947). Morphological studies on glycogcn deposition in schistosomes and other flukes. J. Morph., 80, 321324.CrossRefGoogle ScholarPubMed
Barka, T. and Anderson, P. J. (1962). Histochcmical methods for acid phosphatase using hexazonium pararosanilin as coupler. J. Histochem. and Cytochem., 10, 741753.CrossRefGoogle Scholar
Bayne, B. L. (1973). Physiological changes in Mytilus edulis L. induced by temperature and nutritive stress. J. mar. blot. Ass. U.K., 53, 3958.Google Scholar
Bayne, B. L. and Thompson, R. J. (1970). Some physiological consequences of keeping Mytilus edulis in the laboratory. Helgolander wiss. Meeresunters., 20, 526552.Google Scholar
Bogitsh, B. J., Davis, D. A. and Nunnally, D. A. (1968). Cytochemical and biochemical observations on the digestive tracts of digenetic trematodes. II. Ultrastructural localization of acid phosphatase in Haematoloechus medioplexus. ExpL Parasit., 23, 303308.CrossRefGoogle Scholar
Bogitsh, B. J. and Shannon, W. A. (1971). Cytochemical and biochemical observations on the digestive tracts of digenetic trematodes. VIII. Acid phosphatase activity in Schistosoma mansoni and Schistosomatlum douthltti. ExpL Parasit., 29, 337347.CrossRefGoogle Scholar
Brand, T. Von (1952). Chemical physiology of endoparasitic animals. New York. Academic Press.Google Scholar
Brand, T. Von (1966). Biochemistry of parasites. London and New York. Academic Press.Google Scholar
Brand, T. Von and Files, (1947). Chemical and histological observations on the influence of Schistosoma mansoni infection on Australorbis glabratus. J. Parasit., 33, 476482.CrossRefGoogle Scholar
Brand, T. Von, Mcmahon, P., Gibbs, E. and Higgins, H. (1964). Aerobic and anaerobic metabolism of larval and adult Taenia taeniaeformis. II. Hexose leakage and absorption; tissue glucose and polysaccharides. Expl Parasit., 15, 410429.Google Scholar
Burstone, M. S. (1958). Histochemical comparison of naphthol-AS-phosphates for the demonstration of phosphatases. J. Nat. Cancer Inst., 20, 601613.Google Scholar
Cheng, T. C. (1963a). Histological and histochemical studies on the effects of parasitism of Musculium partumium (Say) by the larvae of Gorgodera amplicava Looss. Proc. Helminth. Soc. Wash., 30, 101107.Google Scholar
Cheng, T. C. (1963b). The effects of Echinoparyphium larvae on the structure of and glycogen deposition in the hepatopancreas of Helisoma trivolis and glycogenesis in the parasite larvae. Malacologia, 1, 291303Google Scholar
Cheng, T. C. (1963c). Biochemical requirements of larval trematodes. Ann. N. Y. Acad. Sci., 113, 289320.Google Scholar
Cheng, T. C. (1964). Studies on phosphatase systems in hepatopancreatic cells of the molluscan host of Echinoparyphium sp. and in the rediae and cercariae of this trematode. Parasitology, 54, 7379.CrossRefGoogle Scholar
Cheng, T. C. (1967). Marine molluscs as host for symbiosis. In: Russel, F. S. (Ed.), Advances in Marine Biology, Vol. 5. London and New York. Academic Press.Google Scholar
Cheng, T. C. and Burton, R. W. (1966). Relationships between Bucephalus sp. and Crassostrea virginica: a histochemical study of some carbohydrates and carbohydrate complexes occurring in the host and parasite. Parasitology, 56, 111112.Google Scholar
Cheng, T. C. and Snyder, R. W. (1962). Studies on host-parasite relationships between larval trematodes and their hosts. I. A review. II. The utilization of the host's glycogen by the intramolluscan larvae of Glypthelmins pennsylvaniensis Cheng, and associated phenomena. Trans. Am. Microsc. Soc., 18, 209228.CrossRefGoogle Scholar
Danielli, J. F. (1952). Structural factors in cell permeability and secretion. Symposium of the Society for Experimental Biology. No. 6. Structural Aspects of Cell Physiology. London. Cambridge University Press.Google Scholar
Davis, D. A., Bogitsh, B. J. and Nunnally, D. A. (1968). Cytochemical and biochemical observations on the digestive tracts of digenetic trematodes. I. Ultrastructure of Haematoloechus medioplexus gut. Expl. Parasit., 22, 96106.Google Scholar
De Zwann, A. and Zandee, D. I. (1972). Body distribution and seasonal changes in the glycogen content of the common sea mussel Mytilus edulis. Comp. Biochem. Physiol, 43, 5358.Google Scholar
Dike, S. C. (1967). Ultrastructure of the caeca of the digenetic trematodes Gorgodera amplicava and Haematoloechus medioplexus. J. Parasit., 53, 11731185.Google Scholar
Elbe, A. F. (1966). Some observations on the seasonal distribution of selected enzymes in the American oyster as revealed by enzyme histochemistry. Proc. Nat. Shellfish. Ass., 56, 3742.Google Scholar
Erasmus, D. A. (1957a). Studies on phosphatase systems of cestodes. I. Studies on Taenia pisiformis (cysticercus and adult). Parasitology, 47, 7080.CrossRefGoogle ScholarPubMed
Erasmus, D. A. (1957b). Studies on phosphatase systems of cestodes. II. Studies on Cysticercus tenuicollis and Moniezia expansa (adult). Parasitology 47, 8191.CrossRefGoogle ScholarPubMed
Erasmus, D. A. (1958). Studies on the morphology, biology and development of a strigeid cercaria (Cercaria X Baylis, 1930). Parasitology, 48, 312335.CrossRefGoogle ScholarPubMed
Field, I. A. (1922). Biology and economic value of the sea mussel Mytilus edulis. Bull. Bur. Fish., 38, 127259.Google Scholar
Fraga, F. (1958). Variacion estacional de la composicion quimica del mejillon (Mytilus edulis). II. Hidratos de carbono. Invest. Pesq. 11, 3337.Google Scholar
Fried, B. and Blumenthal, A. B. (1967). The influence of larval Stephanostomum tenue (Trcmatoda) infection on the carbohydrate content of the marine snail, Nassarius obsoletus. Proc. Pa. Acad. Sci., 41Google Scholar
Frield, F. E. (1961). Studies on larval Fascioloides magna. II. In vitro survival of axenic rediae in amino acids and sugar. J. Parasit., 47, 244247.Google Scholar
Gabbott, P. A. and Bayne, B. L. (1973). Biochemical effects of temperature and nutritive stress on Mytilus edulis L. J. mar. biol. Ass. U.K., 53, 269286.CrossRefGoogle Scholar
Ginecinskij, T. A. (1960). Glycogen in the body of cercariae and the dependence of its distribution upon peculiaritics of their biology.(In Russian). Dokl. Akad. Nauk. SSSR., 135, 10121015.Google Scholar
Ginecinskil, T. A. and Dobrovalskij, A. A. (1962). Glycogen and fat in the various phases of the life cycle of trematodes. (In Russian). Vest. Leningr. gos. Univ.. No. 9, Biol. Ser. fasc., 2, 6781.Google Scholar
Gomori, G. (1952). Microscopic Histochemistry. University of Chicago Press.Google Scholar
Halton, D. W. (1967). Studies on phosphatase activity in trematoda. J. Parasit., 53, 4654.CrossRefGoogle ScholarPubMed
James, B. L. (1965) The effects of parasitism by larval digenea on the digestive gland of the intertidal prosobranch, Littorina saxatilis (Olivi) subsp. tenebrosa (Montagu). Parasilology, 55, 93115.Google Scholar
James, B. L. and Bowers, E. A. (1967). Histochemical observations on the occurrence of carbohydrates, lipids, and enzymes in the daughter sporocyst of Cercaria bucephalopsis haimaena Lacaze-Duthiers, 1854 (Digenea: Bucephalidae). Parasitology, 57, 7986.Google Scholar
Kinoti, G. K., Bird, R. G. and Barker, M. (1971). Electron microscope and histochemical observations on the daughter sporocyst of Schistosoma mattheei and Schistosoma bovis. J. Helminth., 45, 237244.CrossRefGoogle Scholar
Langworthy, C. F. (1905). cited by Field, I. A. (1922). Biology and economic value of the sea mussel Mytilus edulis. Bull. Bur. Fish., 38, 127259.Google Scholar
Lumsden, R. D., Gonzalez, G., Mills, R. R. and Viles, J. M. (1968). Cytological studies on the absorptive surfaces of cestodes. III. Hydrolysis of phosphate esters. J. Parasit., 54, 524535.Google Scholar
Ma, L. (1964). Acid phosphatase in Clonorchis sinensis. J. Parasit., 50, 235240.CrossRefGoogle ScholarPubMed
Martin, A. W. (1961). The carbohydrate metabolism of the mollusca. In Comparative Physiology of Carbohydrate Metabolism in Heterothermic Animals, ed. Martin, A. W.Seattle: University of Washington Press.Google Scholar
Mathers, N. F. (1973). A comparative histochemical survey of enzymes associated with the processes of digestion in Ostrea edulis and Crassostrea angulata (Mollusca: Bivalvia). J. Zool, Lond., 169, 169179.Google Scholar
Michelson, E. H. and Dubois, L. (1973). Increased alkaline phosphatase in the tissues and haemolymph of the snail Biomphalaria glabrata infected with Schistosoma mansoni. Comp. Biochem. Physlol., 44, 763767.Google ScholarPubMed
Nagabhushanam, R. and Lomte, V. S. (1971). Biochemical studies on the freshwater mussel, Parreysia corrugata. Hydrobiologia, 37, 545552.CrossRefGoogle Scholar
Porter, C. A. (1970). The effect of parasitism by the trematode plagioporus virens on the digestive gland of its snail host, Flumenicola virens. Proc. Helminth. Soc. Wash., 37, 3944.Google Scholar
Probert, A. J., Goil, M. and Sharma, R. K. (1972). Biochemical and histochemical studies on the non-specific phosphomonoesterases of Fasciola gigantica Cobbold 1885. Parasitology, 64, 347353.CrossRefGoogle Scholar
Reader, T. A. J. (1971). Histochemical observations on carbohydrates, lipids, and enzymes in digenean parasites and host tissue of Bithynia tentaculata. Parasitology, 63, 125136.CrossRefGoogle Scholar
Robson, E. M. and Williams, I. C. (1971). Relationships of some species of digenea with the marine prosobranch Littorina littorea (L.) III. The effect of larval digenea on the glycogen content of the digestive gland and foot of L. Littorea. J. Helminth., 45, 381401.CrossRefGoogle Scholar
Rothstein, A., Meier, R. C. and Scharff, T. C. (1953). Relationship of the surfaces to metabolism. IX. The digestion of phosphorylated compounds by enzymes located on the surface of intestinal cells. Am. J. Physiol., 173, 4146.Google Scholar
Seifter, S., Dayton, S., Novic, B. and Muntwyler, E. (1950). The estimation of glycogen with the anthrone reagent. Arch. Biochem., 25, 191200.Google ScholarPubMed
Smyth, J. D. (1966). Vie physiology of trematodes. San Francisco: W. H. Freeman and Company.Google Scholar
Thorsell, W. and Bjorkman, N. (1965). Morphological and biochemical studies on absorption and secretion in the alimentary tract of Fasciola hepatica L. J. Parasit., 51, 217223.Google Scholar
Threadgold, L. T. (1968). Electron microscope studies of Fasciola hepatica. VI. The ultrastructural localization of phosphatases. Expl. Parasit., 23, 264276.CrossRefGoogle ScholarPubMed
Uzmann, J. F. (1953). Cercaria milfordensis nov. sp., a microcercous trematode larva from a marine bivalve, Mytilus edulis L., with special reference to its effect on the host. J. Parasit., 39, 445451.Google Scholar
Vernberg, W. B. (1961). Studies on oxygen consumption in digenetic trematodes. VI. The influence of temperature on larval trematodes. Expl. Parasit., 11, 270275.Google Scholar
Vernberg, W. B. and Hunter, W. S. (1963). Utilization of certain substrates by larval and adult stages of Himasthla quissetensis. Expl Parasit., 14, 311315.CrossRefGoogle ScholarPubMed
Widdows, J. and Bayne, B. L. (1971). Temperature acclimation of Mytilus edulis with reference to its energy budget. J. mar. biol. Ass. U.K., 49, 161173.Google Scholar
Wright, C. A. (1966). The pathogenesis of helminths in the mollusca. Helminth. Abstr., 35, 207224.Google Scholar