Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T20:20:49.564Z Has data issue: false hasContentIssue false

Calicophoron daubneyi and Fasciola hepatica: characteristics of natural and experimental co-infections of these digeneans in the snail Lymnaea glabra

Published online by Cambridge University Press:  19 January 2016

P. Vignoles
Affiliation:
INSERM 1094, Faculties of Medicine and Pharmacy, 87025Limoges, France
A. Titi
Affiliation:
INSERM 1094, Faculties of Medicine and Pharmacy, 87025Limoges, France PADESCA Laboratory, Veterinary Science Institute, University Constantine 1, 25100El Khroub, Algeria
A. Mekroud
Affiliation:
PADESCA Laboratory, Veterinary Science Institute, University Constantine 1, 25100El Khroub, Algeria
D. Rondelaud
Affiliation:
INSERM 1094, Faculties of Medicine and Pharmacy, 87025Limoges, France
G. Dreyfuss*
Affiliation:
INSERM 1094, Faculties of Medicine and Pharmacy, 87025Limoges, France
*
*Fax: 33.555.435863 E-mail: gilles.dreyfuss@unilim.fr

Abstract

A retrospective study on different Lymnaea glabra samples collected from central France between 1993 and 2010 was carried out to determine the prevalence of natural co-infections with Calicophoron daubneyi and Fasciola hepatica, and to specify the composition of redial burdens. Experimental infections of L. glabra performed during the same period of time were also analysed to study metacercarial production of each digenean in co-infected snails. Controls were naturally or experimentally co-infected Galba truncatula. In natural co-infections, prevalence was 0.7% in L. glabra (186/25,128) and 0.4% in G. truncatula (137/31,345). Low redial burdens were found in these snails, with F. hepatica rediae significantly more numerous in L. glabra than in G. truncatula (7.5 per snail instead of 5.2). In contrast, the total numbers of C. daubneyi rediae in both lymnaeids were close to each other (4.3 and 3.0 rediae, respectively). In experimentally co-infected groups, prevalence was greater in G. truncatula than in the other lymnaeid (6.3% instead of 3.0%). Significantly shorter patent periods and lower metacercarial production for each digenean were noted in L. glabra than in G. truncatula. However, in both lymnaeids, the two types of cercariae were released during the same shedding waves and several peaks during the patent period were synchronous. In spite of a greater shell height for L. glabra, metacercarial production of both digeneans in co-infected snails was lower than that in G. truncatula, thus indicating a still incomplete adaptation between these French L. glabra and both parasites.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrous, M. (1999) Les mollusques hôtes et les formes larvaires de Paramphistomum daubneyi Dinnik, 1962 (Trematoda) dans le centre de la France. Influence d'une co-infestation avec Fasciola hepatica Linné, 1758. Doctorate Thesis, University of Limoges.Google Scholar
Abrous, M., Rondelaud, D. & Dreyfuss, G. (1996) Paramphistomum daubneyi and Fasciola hepatica: the effect of dual infection on prevalence and cercarial shedding in preadult Lymnaea glabra . Journal of Parasitology 82, 10261029.CrossRefGoogle ScholarPubMed
Abrous, M., Rondelaud, D. & Dreyfuss, G. (1997) Paramphistomum daubneyi: the development of redial generations in the snail Lymnaea truncatula . Parasitology Research 83, 6469.Google Scholar
Abrous, M., Rondelaud, D., Dreyfuss, G. & Cabaret, J. (1998) Unusual transmission of the liver fluke, Fasciola hepatica, by Lymnaea glabra or Planorbis leucostoma in France. Journal of Parasitology 84, 12571259.Google Scholar
Abrous, M., Rondelaud, D., Dreyfuss, G. & Cabaret, J. (1999) Infection of Lymnaea truncatula and Lymnaea glabra by Fasciola hepatica and Paramphistomum daubneyi in farms of central France. Veterinary Research 30, 113118.Google ScholarPubMed
Abrous, M., Rondelaud, D. & Dreyfuss, G. (2000a) Cercarial productivity of each redial generation in single-miracidium infections of Lymnaea truncatula with Paramphistomum daubneyi or Fasciola hepatica . Journal of Helminthology 74, 15.Google Scholar
Abrous, M., Rondelaud, D. & Dreyfuss, G. (2000b) A field study of natural infections in three freshwater snails with Fasciola hepatica and/or Paramphistomum daubneyi in central France. Journal of Helminthology 74, 189194.CrossRefGoogle ScholarPubMed
Augot, D., Abrous, M., Rondelaud, D. & Dreyfuss, G. (1996) Paramphistomum daubneyi and Fasciola hepatica: the redial burden and cercarial shedding in Lymnaea truncatula submitted to successive unimiracidial cross-exposures. Parasitology Research 82, 623627.CrossRefGoogle Scholar
Augot, D., Rondelaud, D., Dreyfuss, G., Cabaret, J., Bayssade-Dufour, C. & Albaret, J.L. (1998) Characterization of Fasciola hepatica redial generations (Trematoda: Fasciolidae) by morphometry and chaetotaxy under experimental conditions. Journal of Helminthology 72, 193198.Google Scholar
Augot, D., Abrous, M., Rondelaud, D., Dreyfuss, G. & Cabaret, J. (1999) Fasciola hepatica: an unusual development of redial generations in an isolate of Lymnaea truncatula . Journal of Helminthology 73, 2730.Google Scholar
Baker, P. (2012–2013) An action plan for the mud snail, Omphiscola glabra. Available at www.freshwaterhabitats.org.ul/../Mud-Snail-Species-Dossier.pdf (accessed accessed 28 January 2015).Google Scholar
Boray, J.C. (1966) Studies on the relative susceptibility of some lymnaeids to infection with Fasciola hepatica and F. gigantica and on the adaptation of Fasciola spp. Annals of Tropical Medicine and Parasitology 60, 114124.Google Scholar
Boray, J.C. (1969) Experimental fascioliasis in Australia. Advances in Parasitology 7, 95210.Google Scholar
Boray, J.C. (1978) The potential impact of exotic Lymnaea spp. on fascioliasis in Australasia. Veterinary Parasitology 4, 127141.Google Scholar
Busson, P., Busson, D., Rondelaud, D. & Pestre-Alexandre, M. (1982) Données expérimentales sur l'infestation des jeunes de cinq espèces de limnées par Fasciola hepatica L. Annales de Parasitologie Humaine et Comparée 57, 555563.Google Scholar
Correa, A.C., Escobar, J.S., Noya, O., Velásquez, L.E., González-Ramírez, C., Hurtrez-Boussès, S. & Pointier, J.P. (2011) Morphological and molecular characterization of Neotropic Lymnaeidae (Gastropoda: Lymnaeoidea), vectors of fasciolosis. Infection, Genetics and Evolution 11, 19781988.Google Scholar
Guy, F., Rondelaud, D., Botineau, M., Dreyfuss, G. & Ghestem, A. (1996) Etude de relations entre les plantes les plus fréquentes et l'abondance de Lymnaea truncatula Müller, vecteur de Fasciola hepatica Linné dans les prairies marécageuses sur sol acide. Revue de Médecine Vétérinaire (Toulouse) 147, 465470.Google Scholar
Hubendick, B. (1951) Recent Lymnaeidae. Their variation, morphology, taxonomy, nomenclature, and distribution. Küngliga Svenska Vetenskapsakademiens Handlingar 3, 1223.Google Scholar
Jones, A. (2005) Family Paramphistomidae Fischoeder, 1901. pp. 229246 in Jones, A., Bray, R.A. & Gibson, D.I. (Eds) Keys to the Trematoda, vol. 2. London, CAB International and the Natural History Museum.Google Scholar
Kendall, S.B. & McCullough, F.S. (1951) The emergence of cercariae of Fasciola hepatica from the snail Limnaea truncatula . Journal of Helminthology 25, 7792.Google Scholar
Ollerenshaw, C.B. (1971) Some observations on the epidemiology of fascioliasis in relation to the timing of molluscicide application in the control of the disease. The Veterinary Record 88, 152164.Google Scholar
Rondelaud, D. (1993) Variabilité interpopulationelle de l'infestation fasciolienne chez le mollusque Lymnaea truncatula Müller. Influence du contact préalable de la population avec le parasite. Bulletin de la Société Zoologique de France 118, 185193.Google Scholar
Rondelaud, D. (2004) Cressonnières naturelles du Limousin et risques de distomatose humaine à Fasciola hepatica . Annales Scientifiques du Limousin 15, 114. Published online in Annales Scientifiques du Naturaliste (2012).Google Scholar
Rondelaud, D., Vignoles, P. & Dreyfuss, G. (2003) Field observations on the aestivation of Omphiscola glabra (Gastropoda, Lymnaeidae) uninfected or infected with Fasciola hepatica in central France. Annales de Limnologie–International Journal of Limnology 39, 129133.CrossRefGoogle Scholar
Rondelaud, D., Vignoles, P. & Dreyfuss, G. (2004) Fasciola hepatica: the developmental patterns of redial generations in naturally-infected Galba truncatula . Parasitology Research 94, 183187.Google Scholar
Rondelaud, D., Vignoles, P. & Dreyfuss, G. (2009a) La Limnée tronquée, un mollusque d'intérêt médical et vétérinaire. Limoges, Presses Universitaires du Limousin (PULIM).Google Scholar
Rondelaud, D., Belfaiza, M., Vignoles, P., Moncef, M. & Dreyfuss, G. (2009b) The redial generations of Fasciola hepatica: a review. Journal of Helminthology 83, 245254.Google Scholar
Rondelaud, D., Mouzet, R., Vignoles, P., Dreyfuss, G. & Cabaret, J. (2014) The production of mammalian trematode infective stages by the snail Galba truncatula . Journal of Helminthology 88, 105111.Google Scholar
Sey, O. (1979) Life-cycle and geographical distribution of Paramphistomum daubneyi Dinnik, 1962 (Trematoda: Paramphistomata). Acta Veterinaria Academiae Scientarum Hungaricae 27, 115130.Google Scholar
Shapiro, S.S. & Wilk, M.B. (1965) An analysis of variance test for normality (complete samples). Biometrika 52, 591611.Google Scholar